
A Preview of Monte Carlo Simulation Tools

A Preview of Monte Carlo Simulation Tools

The advent of new regulatory requirements, such as the Basel accord, and the dramatic growth of
computing power have made Monte Carlo simulation an increasingly important and attractive technique
with numerous applications in finance, especially in the areas of risk management and derivative pricing.

Furthermore, and not surprisingly, numerous financial clients have requested additional MATLAB tools
to support simulation-based activities. To address these requests, The MathWorks has been actively
developing a host of new and enhanced tools to directly support Monte Carlo simulation and related
techniques.

This presentation will preview new and upcoming functionality specifically related to Monte Carlo
simulation, such as:

● Probability distributions and related modeling tools, including extreme value theory (EVT) and
piecewise distributions, as well as interactive tools for visualizing and fitting data

● Copula methods, including calibration and simulation of Gaussian & t copulas
● Stochastic differential equations, including stochastic interpolation and Brownian bridges
● Variance reduction techniques, including antithetic and stratified sampling

In addition to Monte Carlo, the demonstration also highlights a number of application areas of particular
interest to financial clients, such as:

● Database connectivity & data importation
● Variety of optimization examples
● Graphical analysis & visualization capabilities
● Some new & advanced MATLAB language features (MCOS and function handles)
● Cell evaluation & publishing capabilities of MATLAB, which have been particularly popular with

risk management professionals as a way documenting techniques & methodologies for colleagues
& auditors alike

Contents

● Import the Supporting Historical Dataset
● Extreme Value Theory, Piecewise Distributions, and Interactive Fitting Tools
● Copula Methods for Gaussian & Student's t Copulas
● Monte Carlo Simulation of Stochastic Differential Equations
● Example: Incorporating Dynamic Behavior
● Example: The Brownian Bridge Part I: Stochastic Interpolation without Refinement
● Example: The Brownian Bridge Part II: Stochastic Interpolation with Refinement
● Example: End-of-Period Processes: Black-Scholes Option Pricing
● Example: User-Specified Random Number Generation Part I: Antithetic Sampling
● Example: User-Specified Random Number Generation Part II: Stratified Sampling

Import the Supporting Historical Dataset

To support the following presentation, first load a daily historical dataset of 3-month Euribor (quoted as
an annual percentage rate, converted to daily effective yield), the closing index levels of representative
large-cap equity indices of Canada (TSX Composite), France (CAC 40), Germany (DAX), Japan (Nikkei
225), UK (FTSE 100), and US (S&P 500), and corresponding trading dates spanning the interval 07-Feb-
2001 to 24-Apr-2006.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (1 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

There are numerous sources from which the supporting data may be imported into MATLAB, including
various data service providers by way of the Datafeed Toolbox, spreadsheets applications, and directly
from native binary MATLAB files (i.e., MAT-files).

The following code segment invokes the Visual Query Builder of the Database Toolbox, a graphical
interface that allows users to import information from a database without knowing SQL.

clc, clear, querybuilder

The equivalent code needed to import the same dataset makes a database connection, then opens a cursor
with the same SQL statement auto-generated by the Visual Query Builder, and finally fetches the
historical data formatted as a data structure,

setdbprefs('DataReturnFormat', 'structure')
connection = database('Simulation_Data', '', '');
cursor = exec(connection, 'SELECT ALL Dates,Canada,France,Germany,Japan,UK,US,
Euribor3M FROM Simulation_Data ORDER BY Dates ASC');
cursor = fetch(cursor);
close(cursor), close(connection)

SDE_Data = cursor.Data

SDE_Data =
 Dates: [1359x1 double]

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (2 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

 Canada: [1359x1 double]
 France: [1359x1 double]
 Germany: [1359x1 double]
 Japan: [1359x1 double]
 UK: [1359x1 double]
 US: [1359x1 double]
 Euribor3M: [1359x1 double]

The following plots illustrate the data just imported. Specifically, we plot the relative price movements of
each index as well as the Euribor risk-free rate proxy. Notice that the initial level of each index has been
normalized to unity to facilitate the comparison of relative performance over the historical record.

fields = fieldnames(SDE_Data);
dates = SDE_Data.Dates;
countries = fields(2:end-1);
yields = SDE_Data.Euribor3M; % daily effective yields
yields = 360 * log(1 + yields); % continuous, annualized yields

for i = length(countries):-1:1
 prices(:,i) = SDE_Data.(countries{i}); % daily closing prices
end

figure, plot(dates, ret2price(price2ret(prices))), datetick('x')
xlabel('Date'), ylabel('Index Value'), title ('Normalized Daily Index Closings')
legend(countries, 'Location', 'NorthWest')

figure, plot(dates, 100 * yields)
datetick('x'), xlabel('Date'), ylabel('Annualized Yield (%)')
title('Risk Free Rate (3-Month Euribor Continuously-Compounded)')

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (3 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Extreme Value Theory, Piecewise Distributions, and Interactive Fitting Tools

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (4 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

In recent years, numerous financial clients have requested additional functionality related to the use of
Extreme Value Theory, a statistical tool for modeling the fat-tailed behavior of financial data such asset
returns and insurance losses.

In response, 2 univariate probability distributions have been added to the Statistics Toolbox:

● Generalized Extreme Value (GEV) distribution, which lends itself to a modeling technique known
as the block maxima or minima method. In this approach, an historical dataset is divided into a set
of sub-intervals, or blocks, and the largest or smallest observation in each block is recorded and
fitted to a GEV distribution.

● Generalized Pareto (GP) distribution, which lends itself to a modeling technique known as the
distribution of exceedances or peaks over threshold method. In this approach, an historical dataset
is sorted, and the amount by which those observations which exceed a specified threshold is fitted
to a GP distribution.

Since the latter approach is more popular in risk management applications, the following analysis
highlights the Pareto distribution.

In particular, suppose we wish to provide a complete statistical description of the probability distribution
of daily asset returns of any one of the equity indices. Furthermore, assume that this description is
provided by a piecewise semi-parametric distribution in which the asymptotic behavior in each tail is
characterized by a generalized Pareto distribution.

First convert the closing level of each equity index to daily logarithmic returns (sometimes called
geometric, or continuously compounded, returns).

returns = price2ret(prices); % logarithmic returns
[T, nIndices] = size(returns); % historical sample size and # of indices

Since the following analysis applies extreme value theory to characterize the distribution of each
individual equity index return series, it is helpful to examine the details for a particular country. The next
line of code can be changed to examine the details for any country.

index = strmatch('Germany', countries); if isempty(index), index = 1; end

figure, plot(dates(2:end), returns(:,index)), datetick('x')
xlabel('Date'), ylabel('Return')
title(['Daily Logarithmic Returns: ' countries{index}])

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (5 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Given the daily returns shown above, estimate the empirical, or non-parametric, CDF of each index with a
Gaussian kernel. This smoothes the CDF estimates, eliminating the staircase pattern of unsmoothed
sample CDFs. Although non-parametric kernel CDF estimates are well suited for the interior of the
distribution where most of the data is found, they tend to perform poorly when applied to the upper and
lower tails. To better estimate the tails of the distribution, apply EVT to those residuals that fall in each
tail.

Specifically, find upper and lower thresholds such that 10% of the residuals is reserved for each tail. Then
fit the amount by which those extreme residuals in each tail fall beyond the associated threshold to a
parametric GP distribution by maximum likelihood.

The following code segment creates objects of type paretotails, one such object for each index return
series. These Pareto tail objects encapsulate the estimates of the parametric GP lower tail, the non-
parametric kernel-smoothed interior, and the parametric GP upper tail to construct a composite semi-
parametric CDF for each index.

The resulting piecewise distribution object allows interpolation within the interior of the CDF and
extrapolation (function evaluation) in each tail. Extrapolation is very desirable, allowing estimation of
quantiles outside the historical record, and is invaluable for risk management applications.

Moreover, Pareto tail objects also provide methods to evaluate the CDF and inverse CDF (quantile
function), and to query the cumulative probabilities and quantiles of the boundaries between each segment
of the piecewise distribution.

Also, notice that collections of Pareto tail objects are stored in cell arrays, high-level MATLAB data
containers designed to store disparate data types.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (6 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

nPoints = 200; % # of sampled points of kernel-smoothed CDF
tailFraction = 0.1; % Decimal fraction of residuals allocated to each tail

OBJ = cell(nIndices,1); % Cell array of Pareto tail objects

for i = 1:nIndices
 OBJ{i} = paretotails(returns(:,i), tailFraction, 1 - tailFraction, 'kernel');
end

Having estimated the three distinct regions of the piecewise distribution, graphically concatenate and
display the result. Again, note that the lower and upper tail regions, displayed in red and blue,
respectively, are suitable for extrapolation, while the kernel-smoothed interior, in black, is suitable for
interpolation.

The code below calls the CDF and inverse CDF methods of the Pareto tails object of interest with data
other than that upon which the fit is based. Specifically, the referenced methods have access to the fitted
state, and are now invoked to select and analyze specific regions of the probability curve, acting as a
powerful data filtering mechanism.

figure, hold('on'), grid('on')

minProbability = OBJ{index}.cdf((min(returns(:,index))));
maxProbability = OBJ{index}.cdf((max(returns(:,index))));

pLowerTail = linspace(minProbability , tailFraction , 200); % sample lower tail
pUpperTail = linspace(1 - tailFraction, maxProbability , 200); % sample upper tail
pInterior = linspace(tailFraction , 1 - tailFraction, 200); % sample interior

plot(OBJ{index}.icdf(pLowerTail), pLowerTail, 'red' , 'LineWidth', 2)
plot(OBJ{index}.icdf(pInterior) , pInterior , 'black', 'LineWidth', 2)
plot(OBJ{index}.icdf(pUpperTail), pUpperTail, 'blue' , 'LineWidth', 2)

xlabel('Daily Return'), ylabel('Probability')
title (['Semi-Parametric/Piecewise CDF: ' countries{index}])
legend({'Pareto Lower Tail' 'Kernel Smoothed Interior' ...
 'Pareto Upper Tail'}, 'Location', 'NorthWest')

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (7 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Although the previous graph illustrates the composite CDF, it is instructive to examine the GP fit in more
detail.

The CDF of a GP distribution is parameterized as

for exceedances (y), tail index parameter (zeta), and scale parameter (beta).

To visually assess the GP fit, plot the empirical CDF of the upper tail exceedances of the returns along
with the CDF fitted by the GP distribution. Although only 10% of the standardized residuals is used, the
fitted distribution closely follows the exceedance data, so the GP model seems to be a good choice.

figure
[P,Q] = OBJ{index}.boundary; % cumulative probabilities & quantiles at boundaries
y = sort(returns(returns(:,index) > Q(2), index) - Q(2)); % sort exceedances
plot(y, (OBJ{index}.cdf(y + Q(2)) - P(2))/P(1))
[F,x] = ecdf(y); % empirical CDF
hold('on'); stairs(x, F, 'r'); grid('on')

legend('Fitted Generalized Pareto CDF','Empirical CDF','Location','SouthEast');
xlabel('Exceedance'); ylabel('Probability');
title (['Upper Tail of Daily Returns:' countries{index}])

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (8 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Although the analysis shown immediately above is suitable for inclusion within a production
environment, it may also be performed interactively by invoking the Distribution Fitting Tool found in
the Statistics Toolbox.

dfittool(returns(:,index))

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (9 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Copula Methods for Gaussian & Student's t Copulas

Recently, the Statistics Toolbox has added new functionality specifically related to the calibration and
simulation of Gaussian and t copulas.

A copula is a multi-variate cumulative distribution function (CDF) with uniformly-distributed margins.
Although the theoretical foundations were established decades ago, copulas have experienced a
tremendous surge in popularity over the last few years, primarily as a technique for modeling non-
Gaussian portfolio risks.

Although numerous families exist, all copulas represent a statistical device for modeling the dependence
structure between 2 or more random variables. In addition, important statistics, such as rank correlation
and tail dependence, are properties of a given copula and are unchanged by monotonic transforms of its
margins.

Since the CDF and inverse CDF (i.e., quantile function) of the piecewise distributions described above are
both monotonic transforms, a copula provides a very convenient technique to simulate dependent random
variables with dissimilar and arbitrarily-distributed margins. Moreover, since a copula defines a given
dependence structure irrespective of its margins, calibration is typically much easier than estimating the
joint distribution function.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (10 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Copula Calibration

Given the daily index returns from above, now estimate the parameters of the Gaussian and t copulas
using the new Statistic Toolbox function copulafit. Since a t copula becomes a Gaussian copula as the
scalar degrees of freedom parameter (DoF) becomes infinitely large, the two copulas are really of the
same family, and therefore share a linear correlation matrix as a fundamental parameter.

Although calibration of the linear correlation matrix of a Gaussian copula is straightforward, the
calibration of a t copula is more difficult. For this reason, the Statistics Toolbox offers 2 techniques to
calibrate a t copula.

The first technique performs maximum likelihood estimation (MLE) in a two-step process. The inner step
maximizes the log-likelihood with respect to the linear correlation matrix, given a fixed value for the
degrees of freedom. That conditional maximization is placed within a 1-D maximization with respect to
the degrees of freedom, thus maximizing the log-likelihood over all parameters. The function being
maximized in this outer step is known as the profile log-likelihood for the degrees of freedom.

The second technique is derived by differentiating the log-likelihood function with respect to the linear
correlation matrix, assuming the degrees of freedom is a fixed constant. The resulting expression is a non-
linear equation that can be solved iteratively for the correlation matrix. This technique approximates the
profile log-likelihood for the degrees of freedom parameter for large sample sizes. This technique is
usually significantly faster than the true maximum likelihood technique outlined above, however, it
should be used with caution because the estimates and confidence limits may not be accurate for small or
moderate sample sizes.

The code segment below first transforms the daily returns to uniform variates by the piecewise, semi-
parametric CDFs derived above, then fits the Gaussian and t copulas to the transformed data. When the
uniform variates are transformed by the empirical CDF of each margin, the calibration method is often
known as canonical maximum likelihood (CML).

U = zeros(size(returns));

for i = 1:nIndices
 U(:,i) = OBJ{i}.cdf(returns(:,i)); % transform each margin to uniform
end

options = statset('Display', 'off', 'TolX', 1e-4);
[rhoT, DoF] = copulafit('t', U, 'Method', 'ApproximateML', 'Options', options);
rhoG = copulafit('Gaussian', U); clc

If we examine the estimated correlation matrices, we see that they are quite similar but not identical.

rhoG % linear correlation matrix of the optimized Gaussian copula

rhoG =
 1.0000 0.4745 0.5018 0.1857 0.4721 0.6622
 0.4745 1.0000 0.8606 0.2393 0.8459 0.4912
 0.5018 0.8606 1.0000 0.2126 0.7608 0.5811
 0.1857 0.2393 0.2126 1.0000 0.2396 0.1494
 0.4721 0.8459 0.7608 0.2396 1.0000 0.4518
 0.6622 0.4912 0.5811 0.1494 0.4518 1.0000

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (11 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

rhoT % linear correlation matrix of the optimized t copula

rhoT =
 1.0000 0.4662 0.4843 0.1912 0.4735 0.6512
 0.4662 1.0000 0.8878 0.2574 0.8502 0.5119
 0.4843 0.8878 1.0000 0.2337 0.7730 0.5866
 0.1912 0.2574 0.2337 1.0000 0.2510 0.1542
 0.4735 0.8502 0.7730 0.2510 1.0000 0.4771
 0.6512 0.5119 0.5866 0.1542 0.4771 1.0000

Moreover, notice the relatively low degrees of freedom parameter obtained from the t copula calibration,
indicating a significant departure from a Gaussian situation.

DoF % scalar degrees of freedom parameter of the optimized t copula

DoF =
 4.8612

Copula Simulation

Now that the copula parameters have been estimated, simulate jointly-dependent equity index returns
using the copularnd function of the Statistics Toolbox.

Then, by extrapolating into the GP tails and interpolating into the smoothed interior, transform the
uniform variates derived from copularnd to daily returns via the inverse CDF of each index. This
produces simulated returns consistent with those obtained from the historical dataset. These returns are
assumed independent in time, but at any point in time possess the dependence and rank correlation
induced by the given copula.

The following code segment simulates index returns using the t copula, and plots a 2-D scatter plot with
marginal histograms for the French CAC 40 and German DAX using the new scatterhist function of the
Statistics Toolbox (the French and German indices were chosen simply because they have the highest
correlation of the available data).

horizon = 10000; % # of observations (simulation horizon)
randn('state', 0), rand('twister', 0)

R = zeros(horizon, nIndices); % pre-allocate simulated returns array
U = copularnd('t', rhoT, DoF, horizon); % simulate U(0,1) from t copula

for j = 1:nIndices
 R(:,j) = OBJ{j}.icdf(U(:,j));
end

figure
h = scatterhist(R(:,2), R(:,3));
set(findobj(h(1), 'Type', 'line'), 'marker', '.', 'color', 'red', 'markerSize', 1)

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (12 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

xlabel('France'), ylabel('Germany'), title(['t Copula (\nu = ' num2str(DoF,2) ')'])

Now simulate and plot index returns using the Gaussian copula.

randn('state', 0), rand('twister', 0)

R = zeros(horizon, nIndices); % pre-allocate simulated returns array
U = copularnd('Gaussian', rhoG, horizon); % simulate U(0,1) from Gaussian copula

for j = 1:nIndices
 R(:,j) = OBJ{j}.icdf(U(:,j));
end

figure
h = scatterhist(R(:,2), R(:,3));
set(findobj(h(1), 'Type', 'line'), 'marker', '.', 'color', 'red', 'markerSize', 1)
xlabel('France'), ylabel('Germany'), title('Gaussian Copula')

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (13 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

To conclude the discussion of copulas, examine the 2 figures just created. In particular, notice the
remarkable similarity between the miniature histograms on the corresponding axes of each figure. This
similarity is no coincidence.

Since both copulas simulate uniform random variables, which are then transformed to daily returns by the
inverse CDF of the piecewise distribution of each index, the simulated returns of any given index are
identically distributed regardless of the copula. However, the scatter graph of each figure indicates the
dependence structure associated with the copula, and in contrast to the uni-variate margins shown in the
histograms, the scatter graphs are quite distinct.

Once again, the copula defines a dependence structure irrespective of its margins, and therefore offers
many appealing and convenient features not limited to calibration alone.

Monte Carlo Simulation of Stochastic Differential Equations

The following sections highlight important new features and functionality specifically designed to allow
financial clients to simulate Stochastic Differential Equations (SDEs) in MATLAB.

Interestingly, most clients that participated in MATLAB advisory board/focus group discussions indicated
that they were primarily interested in efficient simulation methods, and were largely content to calibrate
their own models, citing the complexity associated with model calibration as an art rather than a science.

The architecture is completely new and makes extensive use of some of the latest MATLAB language
features, including object oriented programming capabilities built upon the new MATLAB Common
Object System (MCOS) infrastructure and data encapsulation using nested functions.

High Level Features

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (14 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Although many of the following features are discussed below and demonstrated by way of a series of
examples, it useful to highlight some of the more salient features here:

● Euler approximation default simulation method
● Approximate analytic solution for separable geometric Brownian motion and Hull-White/Vasicek

models
● Specialized methods for efficient simulation of static, separable Geometric Brownian Motion and

Brownian Motion multivariate models
● Vectorized methods for efficient simulation of static univariate models
● Stochastic interpolation & Brownian bridge simulation methods
● Full support for any combination of static and dynamic model parameters
● Full support for state and Brownian vectors of arbitrary dimensionality
● Optional user-specified random number generation & dependence/correlation structure
● Antithetic sampling
● End-of-period processing/state vector adjustments to perform virtually any type of path-dependent

analysis
● Ability to sample an SDE at intermediate times without reporting those times, improving accuracy

and reducing memory burden
● Ability to avoid storing state and noise time series to improve performance and memory efficiency

General Parametric Specification

The proposed SDE engine allows the simulation of generalized multivariate stochastic processes, and is
designed to provide a flexible and powerful simulation architecture. In addition, the framework provides
several utilities and model classes, offering users a variety of parametric specifications and interfaces.

The architecture is fully multi-dimensional in the both the state vector as well as the Brownian motion,
and offers users the convenience of linear and mean-reverting drift rate specifications. Most parameters
may be specified as traditional MATLAB arrays or as functions accessible by a common interface,
thereby supporting rather general dynamic/non-linear relationships common in SDE simulations.

Specifically, the architecture allows users to simulate correlated paths of any number of state variables
driven by a vector-valued Brownian motion of arbitrary dimensionality, thereby approximating the
underlying multivariate continuous-time process by a vector-valued stochastic difference equation.

Consider the following general stochastic differential equation,

where X is an NVARS x 1 state vector of process variables (e.g., short rates, equity prices) we wish to
simulate, dW is an NBROWNS x 1 Brownian motion vector (also referred to as a Wiener process), F is an
NVARS x 1 vector-valued drift rate function, and G is an NVARS x NBROWNS matrix-valued diffusion rate
function.

Notice that the drift and diffusion rates, F and G, respectively, are rather general functions of a real-valued
scalar sample time t and state vector X(t). Also, notice that static (non-time-varying) coefficients are
simply a special case of the more general dynamic (time-varying) situation, in the same manner as a
function may be a trivial constant, e.g., f(t,X) = 4.

The above SDE is quite general, and so it is often useful to implement derived classes which impose
additional structure on the drift and diffusion rate functions.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (15 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Consider the following linear drift rate specification,

where A is an NVARS x 1 vector-valued function and B is an NVARS x NVARS matrix-valued function.

As an alternative, consider a drift rate specification expressed in mean-reverting form,

S is an NVARS x NVARS matrix-valued function of mean reversion speeds (i.e., rates of mean reversion),
and L is an NVARS x 1 vector-valued function of mean reversion levels (i.e., long run average level).

Similarly, consider the following diffusion rate specification,

where D is an NVARS x NVARS diagonal matrix-valued function in which each diagonal element is the
corresponding element of the state vector raised to the corresponding element of an exponent Alpha,
which is also an NVARS x 1 vector-valued function. V is an NVARS x NBROWNS matrix-valued function
of instantaneous volatility rates in which each row corresponds to a particular state variable and each
column to a particular Brownian source of uncertainty, and associates the exposure of state variables with
sources of risk.

The parametric specifications for the drift and diffusion rate functions are designed to impose a sense of
structure, more intuitively associating parametric restrictions with familiar models derived from the
general SDE class.

Common Interface and Behavior

As already mentioned, much of the design is driven by a desired look and feel. In fact, most models and
utilities outlined below are MATLAB objects, and share common behavior obtained by intentionally
blurring the lines between methods, user-defined functions, object properties, and fields of traditional data
structures. Therefore, in what follows, properties and methods are collectively referred to as members in
an attempt to be intentionally vague.

Although the following examples elaborate in more detail, it is important to highlight the fact that
dynamic (i.e., time-varying) behavior is associated with function evaluation. Moreover, this dynamic
behavior is accessible by passing time and state (t,X) to a common, published interface, and is pervasive
throughout the SDE class system. Although this (t,X) interface appears limited, this seemingly simple
function evaluation approach may be used to model or construct powerful analytics, especially when used
with concert with nested functions.

Throughout many of the examples that follow, most model members may be evaluated, or invoked, as
would any MATLAB function. Thus, although it may be helpful to examine and access object members in
a manner similar to that of data structures, it is often more convenient and useful to think of them as
functions that perform an action.

Example: Incorporating Dynamic Behavior

As previously mentioned, object members are designed to be evaluated as if they were MATLAB

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (16 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

functions accessible by a common interface. This accessibility, in turn, gives users the impression of
dynamic behavior regardless of whether or not the underlying parameters are truly time-varying. Since
members are accessible by a common interface, seemingly simple, linear constructs may in fact represent
complex, non-linear designs.

Moreover, when members are entered as functions object constructors may only verify that they return
arrays of correct size by evaluating them at the initial time and state, but otherwise have no knowledge of
any particular functional form. This is both flexible and potentially dangerous.

Most users will create objects by entering traditional MATLAB arrays that explicitly represent constant
(non-dynamic) parameters, or will need to convert arrays that represent historical time series.

Since time series arrays represent dynamic behavior, and dynamic behavior must be captured by functions
accessible by the (t,X) interface, users will need utilities to convert traditional time series arrays into
callable functions of time and state. To address this, a special conversion function called ts2func (i.e.,
time series to function) is available.

To illustrate dynamic behavior, the following example works with the daily historical dataset of 3-month
Euribor rates and closing levels of the French CAC 40. Assume we wish to simulate risk-neutral sample
paths of the CAC 40 index using a geometric Brownian motion (GBM) model,

in which

represents evolution of the risk-free rate of return.

Furthermore, assume we wish to annualize the relevant information derived from the daily data, and that
each calendar year is composed of 250 trading days.

clc
dt = 1 / 250; % time increment = 1 day = 1/250 years
returns = price2ret(SDE_Data.France); % daily log returns of CAC 40
sigma = std(returns) * sqrt(250); % annualized volatility

yields = SDE_Data.Euribor3M;
yields = 360 * log(1 + yields); % continuously-compounded, annual yield

Now suppose we wish to compare the resulting sample paths obtained from two risk-neutral historical
simulation approaches in which the daily Euribor yields serve as a proxy for the risk-free rate of return.

The first approach specifies the risk-neutral return as the sample average of Euribor yields, and therefore
assumes a constant (non-dynamic) risk-free return.

nPeriods = length(yields); % # of simulated observations

randn('state', 25)
obj = gbm(mean(yields), diag(sigma), 'StartState', 100)
[X1,T] = obj.simulate(nPeriods, 'DeltaTime', dt);

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (17 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

obj =
 Class GBM: Generalized Geometric Brownian Motion
 --
 Dimensions: State = 1, Brownian = 1
 --
 StartTime: 0
 StartState: 100
 Correlation: 1
 Drift: drift rate function F(t,X(t))
 Diffusion: diffusion rate function G(t,X(t))
 Simulation: simulation method/function simByEuler
 Return: 0.0278117
 Sigma: 0.231875

In contrast, the second approach specifies the risk-neutral return as the historical time series of Euribor
yields, and therefore assumes a dynamic, yet deterministic, rate of return (i.e., this example does not
illustrate stochastic interest rates). To illustrate this dynamic effect, use the ts2func utility,

r = ts2func(yields, 'Times', (0:nPeriods - 1)'); clc

Notice that the ts2func utility packages a specified time series array inside a callable function of time and
state, and also synchronizes it with an optional time vector. For instance,

r(0,100)

ans =
 0.0470

evaluates the function at (t = 0, X = 100) and returns the first observed Euribor yield. However, notice
that the resulting function may also be evaluated at any intermediate time t and state X,

r(7.5,200)

ans =
 0.0472

Furthermore, notice that the following command produces exactly the same result when called with time
alone,

r(7.5)

ans =
 0.0472

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (18 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

The equivalence of these last two commands highlights some important features of the architecture.

When members are specified as functions, they must evaluate properly when passed a scalar, real-valued
sample time (t) followed by a state vector (X), and generate an array of appropriate dimensions (which in
the first case is a scalar constant, and in the second is a scalar, piecewise constant function of time alone).

Notice that there is absolutely no obligation to use either time (t) or state (X). In fact, the caller has no
knowledge of any implementation details. In this respect the architecture is only publishing an interface: it
specifies what the inputs and outputs must be, but otherwise offers users complete flexibility regarding
implementation.

In the current example, the function does indeed evaluate properly when passed time followed by state,
thereby satisfying the minimal requirements. The fact that it also evaluates correctly when passed only
time simply indicates that the function does not require the state vector X. The important point to make is
that it works when passed (t,X)!

Furthermore, notice that the utility ts2func performs a zero-order-hold (ZOH) piecewise constant
interpolation, and that the notion of piecewise constant parameters is pervasive throughout the SDE
architecture.

To complete the comparison, perform the second simulation using the same initial random number state,

randn('state', 25), clc
obj = gbm(r, diag(sigma), 'StartState', 100)
X2 = obj.simulate(nPeriods, 'DeltaTime', dt);

obj =
 Class GBM: Generalized Geometric Brownian Motion
 --
 Dimensions: State = 1, Brownian = 1
 --
 StartTime: 0
 StartState: 100
 Correlation: 1
 Drift: drift rate function F(t,X(t))
 Diffusion: diffusion rate function G(t,X(t))
 Simulation: simulation method/function simByEuler
 Return: function ts2func/vector2Function
 Sigma: 0.231875

Finally, plot the series of risk-free reference rates and compare the two simulation trials,

figure, subplot(2,1,1)
plot(SDE_Data.Dates, 100 * yields)
datetick('x'), xlabel('Date'), ylabel('Annualized Yield (%)')
title('Risk Free Rate (3-Month Euribor Continuously-Compounded)')

subplot(2,1,2)
plot(T, X1, 'red', T, X2, 'blue')

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (19 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

xlabel('Time (Years)'), ylabel('Index Level')
title('Constant vs. Dynamic Rate of Return: CAC 40')
legend({'Constant Interest Rates' 'Dynamic Interest Rates'}, 'Location', 'Best')

Notice that the paths are quite close, but not identical. The blue line in the bottom plot uses all the
historical Euribor data, and illustrates a single trial of an historical simulation.

Example: The Brownian Bridge Part I: Stochastic Interpolation without Refinement

Many applications involve post-processing of simulated paths, and may require knowledge of the state
vector at intermediate sample times initially unavailable. One way to approximate these intermediate
states is to perform some sort of deterministic interpolation. However, deterministic interpolation
techniques fail to capture the correct probability distribution at these intermediate times.

A better technique that captures the correct joint distribution performs a Brownian, or stochastic,
interpolation by sampling from a conditional Gaussian distribution. This sampling technique is sometimes
referred to as a Brownian bridge.

The default stochastic interpolation technique is designed to interpolate into an existing time series,
ignoring any new interpolated states as additional information becomes available. This is the usual notion
of interpolation, and is referred to as interpolation without refinement.

Alternatively, the interpolation technique may insert new interpolated states into the existing time series
upon which subsequent interpolation is based, thereby refining the information available at subsequent
interpolation times. This is referred to as interpolation with refinement.

Interpolation without refinement is a more traditional interpolation technique, and is most suitable when

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (20 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

the input series is closely spaced in time. In this situation, interpolation without refinement is a valuable
tool for data imputation in the presence of missing information, but is generally unsuitable as a data
extrapolation technique.

Interpolation with refinement is often more suitable when the input series is widely spaced, and is a useful
tool for extrapolation. In particular, when extrapolation is performed, the interpolation method is in fact a
valuable Monte Carlo simulation method in its own right, and nicely complements the suite of simulation
methods.

Although the stochastic interpolation method is available to any model, the behavior is best illustrated by
way of a constant-parameter Brownian motion process. Consider a correlated, bi-variate Brownian motion
(BM) model of the form

Create a BM object to represent the bi-variate model,

clc
mu = [0.3 ; 0.4];
sigma = [0.2 -0.1 ; 0.1 -0.2];
rho = [1 0.5 ; 0.5 1];

obj = bm(mu, sigma, 'Correlation', rho)

obj =
 Class BM: Brownian Motion
 --
 Dimensions: State = 2, Brownian = 2
 --
 StartTime: 0
 StartState: 0 (2x1 double array)
 Correlation: 2x2 double array
 Drift: drift rate function F(t,X(t))
 Diffusion: diffusion rate function G(t,X(t))
 Simulation: simulation method/function simByEuler
 Mu: 2x1 double array
 Sigma: 2x2 diagonal double array

Assume the drift (Mu) and diffusion (Sigma) parameters above are annualized, and simulate a single
Monte Carlo trial of daily observations for one calendar year (i.e., 250 trading days).

randn('state', 0)
dt = 1/250; % 1 trading day = 1/250 years
[X,T] = obj.simulate(250, 'DeltaTime', dt);

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (21 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

figure, plot(T, X(:,1), 'red', T, X(:,2), 'blue'), grid('on')
xlabel('Time (Years)'), ylabel('State')
title('Bi-Variate Brownian Motion: \rho = 0.5')
limits = axis; axis([0 1 limits(3:4)])

Now interpolate into the simulated time series with a Brownian bridge and plot both the simulated and
interpolated values. To illustrate the effect of interpolation without refinement, it is helpful to examine a
small interval in detail,

t = ((T(1) + dt/2) : (dt/2) : (T(end) - dt/2));
x = obj.interpolate(t, X, 'Times', T);

plot(T, X(:,1), '.-red', T, X(:,2), '.-blue'), grid('on'), hold('on')
plot(t, x(:,1), 'o red', t, x(:,2), 'o blue'), hold('off')

xlabel('Time (Years)'), ylabel('State')
title('Bi-Variate Brownian Motion')
axis([0.4999 0.6001 0.1 0.35])

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (22 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

In this plot, solid red and blue dots indicate the simulated states of the bi-variate model, and the straight
lines connecting these solid dots indicate intermediate states that would be obtained from a deterministic
linear interpolation. Open circles indicate interpolated states.

Notice that open circles associated with every other interpolated state encircle solid dots associated with
the corresponding simulated state. However, interpolated states at the mid-point of each time increment
typically deviate from the straight line connecting each solid dot.

Additional insight into the behavior of a stochastic interpolation is revealed by regarding a Brownian
bridge as a Monte Carlo simulation of a conditional Gaussian distribution.

The following code segment examines the behavior of a Brownian bridge over a single time increment.
Specifically, a single time increment of length dt is divided into 10 sub-intervals. In each sub-interval,
independent draws are taken from a Gaussian distribution conditioned on the simulated states to the left
and right, and the sample mean and variance of each is plotted. For clarity, the graph below plots the
sample statistics of the first state variable only, but similar results hold for any state variable.

randn('state', 10)
nTrials = 5000; % # of Trials at each interpolation time
n = 125; % index of some simulated state near the middle

times = (T(n) : (dt/10) : T(n + 1));
average = zeros(length(times),1);
variance = zeros(length(times),1);

for i = 1:length(times)
 t = times(i);

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (23 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

 x = obj.interpolate(t(ones(nTrials,1)), X, 'Times', T);
 average(i) = mean(x(:,1));
 variance(i) = var(x(:,1));
end

subplot(2,1,1), hold('on'), grid('on')
plot([T(n) T(n + 1)], [X(n,1) X(n + 1,1)], '.-b')
plot(times, average, 'or'), hold('off')
title('Brownian Bridge without Refinement: Sample Mean')
ylabel('Average')
limits = axis; axis([T(n) T(n + 1) limits(3:4)])

subplot(2,1,2), hold('on'), grid('on')
plot(T(n), 0, '.-b', T(n + 1), 0, '.-b')
plot(times, variance, '.-r'), hold('off')
title('Brownian Bridge without Refinement: Sample Variance')
xlabel('Time (Years)'), ylabel('Variance')
limits = axis; axis([T(n) T(n + 1) limits(3:4)])

The Brownian interpolation within the chosen dt interval illustrates the following:

● The conditional mean of each state variable lies on a straight line segment between the original
simulated states at each endpoint.

● The conditional variance of each state variable is a quadratic function which attains its maximum
midway between the interval endpoints, and is zero at each endpoint.

● The maximum variance, although dependent upon the actual model diffusion rate function G(t,X),
is the variance of the sum of correlated Gaussian variates scaled by the factor dt/4.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (24 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

The illustration above highlights interpolation without refinement, in that none of the interpolated states
take into account any new information as it becomes available.

Had interpolation with refinement been performed, new interpolated states would have been inserted into
the time series and made available to subsequent interpolations on a trial-by-trial basis. In this situation,
all random draws for any given interpolation time would be identical. Had this been the case, the above
plot of the sample mean would exhibit greater variability but would still be clustered around the straight
line segment between the original simulated states at each endpoint. The plot of the sample variance,
however, would be zero for all interpolation times, exhibiting no variability at all.

Example: The Brownian Bridge Part II: Stochastic Interpolation with Refinement

The previous example introduced the default stochastic interpolation technique known as interpolation
without refinement. Without refinement, interpolated states are unavailable at subsequent interpolation
times, making the technique generally unsuitable for data extrapolation.

Alternatively, an interpolation technique may insert new interpolated states into an existing time series
upon which subsequent interpolation is based, making any new state information available at subsequent
interpolation times.

This is referred to as interpolation with refinement, and is more suitable for data extrapolation. With
refinement, the interpolation technique offers a legitimate Monte Carlo simulation method in its own
right, and complements the suite of simulation methods.

For reference, notice that all simulation methods require users to specify a time grid by specifying the
number of periods, optionally augmented with a scalar or vector of strictly positive time increments, and a
number of intermediate time steps. The combination of these, together with an initial sample time
associated with the object, uniquely determines the sequence of times at which the state vector is sampled.
Thus, simulation methods traverse the time grid from beginning to end (i.e., from left to right).

In contrast, interpolation methods allow the time grid to be traversed in any order, allowing both forward
and backward movements in time. To do so, they allow users to specify a vector of interpolation times,
the elements of which are not required to be unique.

Since samples may be generated in any order, a traditional Monte Carlo simulation is just a special case of
interpolation: an open-ended interpolation that involves sampling from a Gaussian distribution
conditioned on the previous state alone.

Note that many references define The Brownian Bridge as a conditional simulation combined with a
scheme for traversing the time grid, effectively merging 2 distinct algorithms. In contrast, the
interpolation method offered here provides additional flexibility by intentionally separating the
algorithms.

One popular algorithm for moving about a time grid involves an initial Monte Carlo simulation to sample
the state at the terminal time, then successively sampling intermediate states by stochastic interpolation.
This algorithm allows the first few samples to determine the overall behavior of the paths, while later
samples progressively refine the structure. Such algorithms are often cited as variance reduction
techniques.

This algorithm is particularly simple when the number of interpolation times is a power of 2. In this case,
each interpolation falls midway between 2 known states, refining the interpolation in a manner similar to
bi-section. The following example highlights the flexibility of refined interpolation by implementing this
popular power-of-two algorithm.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (25 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

To illustrate this approach, we again work with the daily series of 3-month Euribor rates.

clf, plot(SDE_Data.Dates, 100 * SDE_Data.Euribor3M)
datetick('x'), xlabel('Date'), ylabel('Daily Yield (%)')
title('3-Month Euribor as a Daily Effective Yield')

Now consider fitting a simple univariate Vasicek model to the daily equivalent yields of the 3-month
Euribor data,

in which

are scalar constants. Given initial conditions, the distribution of the short rate at some time T in the future
is Gaussian with mean

and variance

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (26 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

To calibrate this simple short rate model, re-write the model in more familiar regression format,

in which

and perform an ordinary linear regression in which the model volatility is proportional to the standard
error of the residuals,

yields = SDE_Data.Euribor3M;
regressors = [ones(length(yields) - 1, 1) yields(1:end-1)];

[coefficients, intervals, residuals] = regress(diff(yields), regressors);

dt = 1; % time increment = 1 day
speed = -coefficients(2) / dt;
level = -coefficients(1) / coefficients(2);
sigma = std(residuals) / sqrt(dt); clc

Now create a HWV object with an initial StartState set to the most recently observed short rate,

obj = hwv(speed, level, sigma, 'StartState', yields(end))

obj =
 Class HWV: Hull-White/Vasicek
 --
 Dimensions: State = 1, Brownian = 1
 --
 StartTime: 0
 StartState: 7.70408e-005
 Correlation: 1
 Drift: drift rate function F(t,X(t))
 Diffusion: diffusion rate function G(t,X(t))
 Simulation: simulation method/function simByEuler
 Sigma: 4.77637e-007
 Level: 6.00424e-005
 Speed: 0.00228854

Assume, for example, we wish to simulate the fitted model over 64 trading days (a power of 2), but using
a refined Brownian bridge with the power-of-two algorithm instead of the usual beginning-to-end Monte
Carlo simulation approach.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (27 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Furthermore, assume that the initial time and state coincide with those of the last available observation of
the historical data, and the terminal state is the expected value of the Vasicek model 64 days into the
future. In this case, we may assess the behavior of various paths that all share the same initial and terminal
states, perhaps to support pricing path-dependent interest rate options over a 3-month interval.

The following code segment creates a vector of interpolation times to traverse the time grid by moving
both forward and backward in time. Specifically, the first interpolation time is set to the most recent short
rate observation time, the second interpolation time is set to the terminal time, then subsequent
interpolation times successively sample intermediate states.

T = 64; % Terminal time in 64 days (periods)
times = (1:T)'; % Sample times re-arranged by the bridge
t = NaN(length(times) + 1, 1); % Pre-allocate the interpolation times
t(1) = obj.StartTime; % 1st time = last observation time
t(2) = T; % 2nd time = terminal time

delta = T;
jMax = 1;
iCount = 3;

for k = 1:log2(T)
 i = delta / 2;
 for j = 1:jMax
 t(iCount) = times(i);
 i = i + delta;
 iCount = iCount + 1;
 end
 jMax = 2 * jMax;
 delta = delta / 2;
end

It is instructive to examine the sequence of interpolation times generated by this popular algorithm,

stem(1:length(t), t, 'filled')
xlabel('Index'), ylabel('Interpolation Time (Days)')
title ('Sampling Scheme for the Power-of-Two Algorithm')

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (28 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Notice that the first few samples are widely-separated in time and determine the course structure of the
paths, while later samples are closely-spaced and progressively refine the detailed structure.

Now that the sequence of interpolation times has been generated, initialize a course time series grid to
initiate the interpolation. The sampling process begins at the last observed time and state taken from the
historical short rate series, and ends 64 days into the future at the expected value of the Vasicek model
derived from the calibrated parameters.

average = obj.StartState * exp(-speed * T) + level * (1 - exp(-speed * T));
X = [obj.StartState ; average];

Now generate 5 sample paths setting the Refine input flag to TRUE, indicating that each new interpolated
state is inserted into the time series grid as it becomes available. Notice that interpolation is performed on
a trial-by-trial basis, and since the input time series X has 5 trials (each page of the 3-D time series
represents an independent trial), the interpolated output series Y has 5 pages too.

nTrials = 5;
randn('state', 0)

Y = obj.interpolate(t, X(:,:,ones(nTrials,1)), 'Times' , [obj.StartTime T], ...
 'Refine', true);

Finally, plot the resulting sample paths. Since the interpolation times are not monotonically increasing,
sort the times and re-order the corresponding short rates.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (29 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

[t,i] = sort(t);
Y = squeeze(Y);
Y = Y(i,:);
plot(t, 100 * Y), hold('on')
plot(t([1 end]), 100 * Y([1 end],1), '. black', 'MarkerSize', 20)
xlabel('Interpolation Time (Days into the Future)')
ylabel('Yield (%)'), hold('off')
title ('Euribor Yields Obtained by Brownian Bridge Interpolation')

The short rates shown above represent alternative sample paths that share the same initial and terminal
values, and illustrate a special, albeit simplistic, case of a broader sampling technique known as stratified
sampling. For a more sophisticated example of stratified sampling, see Example: User-Specified Random
Number Generation Part II: Stratified Sampling.

Although this simple example simulated a univariate Vasicek interest rate model, it is applicable to
problems of any dimensionality.

Example: End-of-Period Processes: Black-Scholes Option Pricing

All simulation and interpolation methods allow users to specify a sequence of functions, or background
processes, to evaluate at the end of every sample time. These functions are specified as callable functions
of time and state, and must return an updated state vector X,

If more than one processing function is specified, they must be entered as a cell array of functions, and are

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (30 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

invoked in the order found in the cell array.

Notice that processing functions are not obligated to use time (t) or state (X), nor are they required to
update or change the input state vector in any way. In fact, simulation/interpolation methods have no
knowledge of any implementation details, and in this respect only adhere to a published interface.

At first glance, the presence of such processing functions may seem strange, yet they offer users a
powerful modeling tool with applications limited only by the imagination. Such functions allow users to,
for example, specify boundary conditions, accumulate statistics, plot graphs, and price path-dependent
options.

Moreover, processing functions also allows users to avoid simulation outputs altogether.

As an example, consider pricing a European stock option by Monte Carlo simulation within a Black-
Scholes-Merton framework. Assume the following characteristics:

● stock is currently trading at 100
● stock pays no dividends
● stock volatility is 50% per annum
● option strike price is 95
● option expires in 3 months
● risk-free rate is constant at 10% per annum

To solve this problem, model the evolution of the underlying stock by a univariate geometric Brownian
motion (GBM) model with constant parameters,

Furthermore, assume we are interested in simulating the stock price on a daily basis, and that each
calendar month is composed of 21 trading days.

strike = 95; % exercise price
rate = 0.1; % annualized risk-free rate
sigma = 0.5; % annualized volatility
dt = 1 / 252; % time increment = 1 day = 1/252 years
nPeriods = 63; % # of simulation periods in 3 months = 63 trading days
T = nPeriods * dt; % time to expiration = 3 months = 0.25 years

obj = gbm(rate, sigma, 'StartState', 100);

The goal is to simulate independent paths of daily stock prices, and calculate the price of European
options as the risk-neutral sample average of the discounted terminal option payoff at expiration 63 days
from now. This example calculates option prices by two approaches.

The first approach performs a traditional Monte Carlo simulation, explicitly requesting the simulated
stock paths as an output. These output paths are then post-processed to price the options.

The second approach specifies an end-of-period processing function, accessible by time and state, which
records the terminal stock price of each sample path. This processing function is implemented as a nested
function with access to shared information,

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (31 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

clc, type blackScholesExample

function f = blackScholesExample(nTimes, nPaths)
%Black-Scholes European Option Pricing Monte Carlo Example.
% Demonstrate a simple end-of-period processing function to price European
% options by Monte Carlo simulation assuming a constant risk-free rate. The
% example also illustrates how to update, access, and share information among
% several nested functions.
%
% f = blackScholesExample(nTimes, nPaths)
%
% Inputs:
% nTimes - Number of simulation times steps (nTimes = nPeriods * nSteps).
% nPaths - Number of independent sample paths (i.e., simulation trials).
%
% Output:
% f - Structure of nested function handles.

% Copyright 1999-2007 The MathWorks, Inc.
% $Revision$ $Date$

prices = zeros(nPaths,1); % Pre-allocate terminal price vector.
iTime = 0; % Counter for the period index.
iPath = 1; % Counter for the trial index.
T = 0; % Initialize time-to-expiry.
tStart = 0; % Initialize sample time.

f.BlackScholes = @saveTerminalStockPrice; % End-of-period processing function.
f.CallPrice = @getCallPrice; % Call option pricing utility.
f.PutPrice = @getPutPrice; % Put option pricing utility.

function X = saveTerminalStockPrice(t,X) % The actual workhorse, f(t,X).
 if iTime == 0 % Account for initial validation.
 iTime = 1;
 tStart = t;
 else % Simulation/interpolation is live!
 if iTime < nTimes
 % Do something here if necessary.
 iTime = iTime + 1; % Update the period counter.
 else % The last period of the current trial.
 prices(iPath) = X; % Save the terminal price for this trial.
 iTime = 1; % Re-set the time period counter.
 iPath = iPath + 1; % A new trial has begun.
 T = t - tStart; % Accumulate the time-to-expiration.
 end
 end
end

function value = getCallPrice(strike, rate)
 value = mean(exp(-rate * T) * max(prices - strike, 0));
end

function value = getPutPrice(strike, rate)
 value = mean(exp(-rate * T) * max(strike - prices, 0));

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (32 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

end

end % End of outer/primary function.

Before simulation, first invoke the example file to access the end-of-period processing function,

clc
nTrials = 2000; % # of independent trials (i.e., paths)
f = blackScholesExample(nPeriods, nTrials)

f =
 BlackScholes: @blackScholesExample/saveTerminalStockPrice
 CallPrice: @blackScholesExample/getCallPrice
 PutPrice: @blackScholesExample/getPutPrice

Now simulate independent trials (sample paths). Notice that the simulated stock price paths are requested
as an output and that an end-of-period processing function is specified,

randn('state', 0)

X = obj.simBySolution(nPeriods, 'DeltaTime', dt, 'nTrials', nTrials, ...
 'Processes', f.BlackScholes); clc

Now calculate the option prices directly from the simulated stock price paths. Since these are European
options, the following code segment simply ignores all intermediate stock prices,

call = mean(exp(-rate * T) * max(squeeze(X(end,:,:)) - strike, 0))
put = mean(exp(-rate * T) * max(strike - squeeze(X(end,:,:)), 0))

call =
 14.2566
put =
 6.0388

Now price the options indirectly by invoking the nested functions found in the structure of function
handles,

f.CallPrice(strike, rate)
f.PutPrice (strike, rate)

ans =
 14.2566
ans =
 6.0388

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (33 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

For reference, the theoretical call and put prices computed from the Black-Scholes option formulas are
13.6953 and 6.3497, respectively.

Although the same option prices are obtained, the latter approach works directly with the terminal stock
prices of each sample path, and is therefore much more memory efficient. In fact, in this example there is
no compelling reason to request an output at all.

To verify this claim, perform the simulation again with no outputs. Notice that the following code
segment must re-initialize/re-synchronize the nested functions by calling the blackScholesExample
function again,

randn('state', 0)
f = blackScholesExample(nPeriods, nTrials);

obj.simBySolution(nPeriods, 'DeltaTime', dt, 'nTrials', nTrials, ...
 'Processes', f.BlackScholes);

f.CallPrice(strike, rate)
f.PutPrice (strike, rate)

ans =
 14.2566
ans =
 6.0388

Although this is a rather simplistic example, it illustrates several important features.

First, notice that the Black-Scholes example file consists of several utility functions nested within an
outer, or primary, function. The outer function is invoked with problem-specific parameters needed to
initialize and pre-allocate information shared by the nested functions and retained from one call to the
next.

In other words, we have effectively created an object that encapsulates information and allows users to
access and manipulate this information by invoking nested functions. In fact, the same effect could have
been implemented by formally designing a class and creating an object with various methods, but a
simple structure with nested functions offers a convenient alternative.

In this respect, the outer function does not calculate anything per se, but rather posts shared information.
The output is not option prices, but rather a data structure whose fields encapsulate the details of the
nested functions. The user is then able to access, update, and manipulate this shared information by
invoking nested functions, at least one of which must be accessible by the (t,X) interface.

Example: User-Specified Random Number Generation Part I: Antithetic Sampling

All simulation methods allow users to directly specify the random noise process used to generate the
Brownian motion vector (Wiener process) which, in turn, drives the Monte Carlo simulation. Note that the
interpolation method does not support user-specified noise processes.

The noise process may be specified in 2 ways:

● As an explicit 3-D time series array of dependent random variates, or

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (34 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

● As a callable function of time and state

When specified as a function, the noise generator must be of the form

whose output is column vector of (possibly dependent) random variates whose length is consistent with
the dimension of the Brownian motion. If no noise process is specified, then correlated Gaussian variates
are generated based on the Correlation member of the SDE object.

As for end-of-period processing functions, noise functions are not obligated to use time (t) or state (X). In
fact, simulation methods have no knowledge of any implementation details, and in this respect only
adhere to a published interface.

At first glance, the presence of noise generation functions may seem strange, yet such functions allow
users to, for example, implement conditional sampling and variance reduction techniques, incorporate non-
Gaussian processes, or model stochastic correlation structures, etc ...

To demonstrate user-specified noise processes, consider a popular variance reduction technique known as
antithetic sampling applied to a path-dependent barrier option. Antithetic sampling is a relatively
straightforward technique that attempts to replace one sequence of random observations with another of
the same expected value but smaller variance. The technique attempts to reduce variance by inducing
negative dependence between paired input samples in the hope that negative dependence between paired
output samples will result. The greater the extent of negative dependence, the more effective antithetic
sampling will be.

To demonstrate, assume we wish to value a European up-and-in call option on a single underlying stock
whose price evolution is governed by geometric Brownian motion (GBM) model with constant
parameters,

and assume the following characteristics:

● stock is currently trading at 105
● stock pays no dividends
● stock volatility is 30% per annum
● option strike price is 100
● option expires in 3 months
● option barrier is 120
● risk-free rate is constant at 5% per annum

Furthermore, assume we are interested in simulating the stock price on a daily basis,

clc
barrier = 120; % barrier
strike = 100; % exercise price
rate = 0.05; % annualized risk-free rate
sigma = 0.3; % annualized volatility
nPeriods = 63; % # of simulation periods in 3 months = 63 trading days
dt = 1 / 252; % time increment = 252 days = 1 year
T = nPeriods * dt; % time to expiration = 3 months = 0.25 years

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (35 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

obj = gbm(rate, @(t,X) sigma, 'StartState', 105);

The goal is to simulate various paths of daily stock prices, and calculate the price of the barrier option as
the risk-neutral sample average of the discounted terminal option payoff. Since this is a barrier option we
must also determine if and when the barrier is crossed. This example calculates the option's price using 2
completely different techniques:

● perform antithetic sampling by explicitly setting the flag Antithetic = true,
● specify a function, Z(t,X), to generate antithetic Gaussian samples, and specify an end-of-period

processing function to record the maximum and terminal stock prices on a path-by-path basis

The first technique performs a Monte Carlo simulation by requesting the simulated stock paths as an
output, and does so by explicitly asking for an antithetic sample. These output paths are then post-
processed in pairs to price the option. For small-to-medium-sized simulations, this offers an acceptable
compromise between convenience, memory efficiency, and runtime performance.

To illustrate antithetic sampling, consider a small-scale simulation designed to price the barrier option
discussed above. The first technique simulates 200 paths and sets the Antithetic input flag to true,
producing a 3-D time series matrix with 200 pages (i.e., the third dimension is 200).

When antithetic sampling is requested, the sampling is performed such that all primary and antithetic
paths are simulated and stored in successive matching pairs: Odd paths (1,3,5,...) correspond to the
primary Gaussian paths and even paths (2,4,6,...) are the matching antithetic paths of each pair derived by
negating the Gaussian draws of the corresponding primary (odd) path.

nTrials = 200; % # of simulated paths = 100 primary/antithetic pairs
randn('state', 10)
[X, Time] = obj.simBySolution(nPeriods, 'DeltaTime', dt, 'nTrials', nTrials, ...
 'Antithetic', true);

To illustrate the effect of antithetic sampling, plot the sample paths of the first primary/antithetic pair.
Also notice that, when working with univariate models, it is often convenient to re-order the 3-D output
path arrays as 2-D equivalents by removing the singleton second dimension (i.e., the number of columns
in univariate models is 1, which is slightly awkward to manipulate).

X = squeeze(X);

plot(Time, X(:,1), 'blue', Time, X(:,2), 'red')
xlabel('Time (Years)'), ylabel('Stock Price'), title('Antithetic Sampling')
legend({'Primary Path' 'Antithetic Path'}, 'Location', 'Best')

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (36 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

In contrast, the second technique takes a completely different approach.

Specifically, in many situations the entire simulated process is unnecessary, which offers an opportunity
to dramatically reduce memory usage or increase the scale of the simulation. The following technique
exploits this opportunity by specifying a function to explicitly generate antithetic Gaussian variates on a
path-by-path basis,

type antithetic1Example

function f = antithetic1Example(nTimes, nBrownians)
%Antithetic Sampling Random Number Generation Example.
% Demonstrate a user-specified function to generate independent Gaussian
% antithetic samples on a path-by-path basis. Although this function generates
% independent Gaussian noise, arbitrary correlation could be added. This
% example also illustrates how to access and update saved information.
%
% f = antithetic1Example(nTimes, nBrownians)
%
% Inputs:
% nTimes - Number of simulation times steps (nTimes = nPeriods * nSteps).
% nBrownians - Dimension of the Brownian motion vector.
%
% Output:
% z - Function handle to generate independent Gaussian antithetic samples on
% a path-by-path basis.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (37 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

% Copyright 1999-2007 The MathWorks, Inc.
% $Revision$ $Date$

iTime = 0; % Counter for the period index.
iPath = 1; % Counter for the trial index.
z = randn(nBrownians,nTimes); % Generate uncorrelated Gaussians.
f = @antitheticSampling; % Antithetic Gaussian noise function.

function Z = antitheticSampling(t, X) % The actual workhorse, Z(t,X).
 if iTime == 0 % Account for initial validation.
 iTime = 1;
 Z = z(:,iTime);
 else % Simulation is live!
 Z = z(:,iTime); % Return the next Gaussian vector.
 if iTime < nTimes
 iTime = iTime + 1; % Update the period counter.
 else % The last period of the current path.
 iTime = 1; % Re-set the time period counter.
 iPath = iPath + 1; % A new path will begin next time.
 if rem(iPath, 2) == 0 % Is this primary or antithetic path?
 z = -z; % Even paths are antithetic paths.
 else
 z = randn(nBrownians,nTimes); % Odd paths are primary paths.
 end
 end
 end
end
end % End of outer/primary function.

In addition, the technique also specifies an end-of-period processing function which records the maximum
and terminal stock prices of each sample path. This processing function is also accessible by time and
state, and is implemented as a nested function with access to shared information.

This shared information also allows the option price and corresponding standard error to be calculated,
and operates in a manner similar to the Black-Scholes example already discussed (see Example: End-of-
Period Processes Part: Black-Scholes Option Pricing).

clc, randn('state', 10)
z = antithetic1Example(nPeriods, 1) % antithetic Gaussian sampling function
f = antithetic2Example(nPeriods, nTrials) % option pricing & standard error

z =
 @antithetic1Example/antitheticSampling
f =
 SaveMaxLast: @antithetic2Example/saveMaxLastPrices
 OptionPrice: @antithetic2Example/getBarrierOptionPrice
 StandardError: @antithetic2Example/getStandardError

Now perform the same antithetic sampling experiment using the functions just created. Since this
technique requests no outputs, it dramatically minimizes memory usage and represents a far more elegant
solution,

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (38 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

obj.simBySolution(nPeriods, 'DeltaTime', dt, 'nTrials', nTrials, 'Z', z, ...
 'Processes', f.SaveMaxLast); clc

Now approximate the option price and 95% confidence interval obtained from latter technique. For
comparison, the value of the up-and-in barrier option is approximately 7.83, as verified by a Cox-Ross-
Rubinstein binomial tree.

optionPrice = f.OptionPrice (strike, rate, barrier);
standardError = f.StandardError(strike, rate, barrier, true);
lowerBound = optionPrice - 1.96 * standardError;
upperBound = optionPrice + 1.96 * standardError;

fprintf(' Up-and-In Barrier Option Price: %8.4f\n', optionPrice)
fprintf(' Standard Error of Price: %8.4f\n', standardError)
fprintf(' Confidence Interval Lower Bound: %8.4f\n', lowerBound)
fprintf(' Confidence Interval Upper Bound: %8.4f\n', upperBound)

 Up-and-In Barrier Option Price: 7.4549
 Standard Error of Price: 0.6763
 Confidence Interval Lower Bound: 6.1294
 Confidence Interval Upper Bound: 8.7805

Example: User-Specified Random Number Generation Part II: Stratified Sampling

As discussed in Example: User-Specified Random Number Generation Part I: Antithetic Sampling, all
simulation methods allow users to directly specify a noise process as a callable function of time and state,

Similar to antithetic sampling, stratified sampling is also a variance reduction technique, yet operates by
constraining a proportion of sample paths to specific subsets, or strata, of the sample space rather than
inducing negative dependence between paired samples.

Specifically, this example specifies a noise function to stratify the terminal value of a univariate equity
price series. Starting from known initial conditions, the function first stratifies the terminal value of a
standard Brownian motion, then samples the process from beginning to end by drawing conditional
Gaussian samples via a Brownian bridge.

The stratification assumes that each path is associated with a single stratified terminal value such that the
number of paths is equal to the number strata, a technique referred as proportional sampling. This
example is similar to that found in Example: The Brownian Bridge Part II: Stochastic Interpolation with
Refinement, yet more sophisticated.

Since stratified sampling requires knowledge of the future, it also requires more sophisticated time
synchronization. Specifically, the example function requires knowledge of the entire sequence of sample
times,

clc, type stratifiedExample

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (39 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

function z = stratifiedExample(nPaths, times)
%Univariate Terminal Stratification Random Number Generation Example.
% Demonstrate a user-specified noise function to stratify the terminal value
% of a standard Brownian motion. The process is then sampled from beginning to
% end by drawing conditional Gaussian samples via a Brownian bridge.
%
% z = antithetic1Example(nPaths, Times)
%
% Inputs:
% nPaths - Number of sample paths (the same as nTrials in this example).
% Times - Vector of sample times associated with all simulated paths.
%
% Output:
% z - Function to generate stratified Gaussian samples on a path-by-path
% basis. Stratification assumes that each path is associated with a single
% stratified terminal value such that the number of paths is equal to the
% number strata (proportional sampling). Note that the noise function does
% not return the actual Brownian paths, but rather the N(0,1) Gaussian draws
% Z(t,X) that drive it.

% Copyright 1999-2007 The MathWorks, Inc.
% $Revision$ $Date$

iTime = 0; % Counter for the period index.
iPath = 1; % Counter for the trial index.
W1 = 0; % Initialize the Brownian state.
T = times(end); % Terminal (final) sample time.
dt = diff(times(:)); % Time increments.
nTimes = numel(dt); % # of time increments per sample path.

U = ((1:nPaths)' - 1 + rand(nPaths,1)) / nPaths;
WT = norminv(U) * sqrt(T); % Stratify terminal Brownian motion.
z = @stratifiedSampling; % Brownian bridge stratification function.

function Z = stratifiedSampling(t, X) % The actual workhorse, Z(t,X).
 if iTime == 0 % Account for initial validation.
 iTime = 1;
 Z = 0;
 else % Simulation is live!
 tInsert = t + dt(iTime); % The interpolation time.

 drift = ((T - tInsert) * W1 + dt(iTime) * WT(iPath)) / (T - t);
 variance = (T - tInsert) * dt(iTime) / (T - t);
 W2 = drift + sqrt(variance) * randn(1);

 dW = W2 - W1; % Brownian increment.
 Z = dW / sqrt(dt(iTime)); % Return the next Gaussian vector.
 W1 = W2; % Save the previous Brownian state.

 if iTime < nTimes
 iTime = iTime + 1; % Update the period counter.
 else % The last period of the current path.
 iTime = 1; % Re-set the time period counter.

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (40 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

 iPath = iPath + 1; % A new path will begin next time.
 W1 = 0;
 end
 end
end
end % End of outer/primary function.

The function implements proportional sampling by partitioning the unit interval into bins of equal
probability by first drawing a random number uniformly distributed in each bin. These stratified uniform
draws are then transformed by the inverse cumulative distribution function of a standard N(0,1) Gaussian
distribution. Finally, the resulting stratified Gaussian draws are scaled by the square root of the terminal
time to stratify the terminal value of the Brownian motion.

Notice that the noise function above does not return the actual Brownian paths, but rather the Gaussian
draws Z(t,X) that drive it. Since the simulation method will scale Z(t,X) by the square root of the current
time increment dt, the function divides by the square root of dt.

To introduce the sampling technique, suppose we wish to stratify the terminal value of a univariate, zero-
drift, unit-variance-rate Brownian motion (BM) model,

Furthermore, assume we are interested in simulating 10 paths of the process on a daily basis over a 3
month period, and that each calendar month and year is composed of 21 and 252 trading days,
respectively.,

clc, randn('state', 10), rand('state', 0)

dt = 1 / 252; % time increment = 1 day = 1/252 years
nPeriods = 63; % # of simulation periods in 3 months = 63 trading days
T = nPeriods * dt; % time to expiration = 3 months = 0.25 years
nPaths = 10; % # of simulated paths

obj = bm(0, 1, 'StartState', 0);
sampleTimes = cumsum([obj.StartTime ; dt(ones(nPeriods,1))]);
z = stratifiedExample(nPaths, sampleTimes)

z =
 @stratifiedExample/stratifiedSampling

Now simulate the standard Brownian paths by explicitly passing the stratified sampling function to the
simulation method, and re-order the output sample paths for convenience,

X = obj.simulate(nPeriods, 'DeltaTime', dt, 'nTrials', nPaths, 'Z', z);
X = squeeze(X); % Re-order the 3-D output to a 2-D equivalent array.

To verify the stratification, re-create the uniform draws with proportional sampling, transform them to
obtain the terminal values of standard Brownian motion, and plot the terminal values and output paths on

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (41 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

the same figure,

rand('state', 0) % Use the same initial state.
U = ((1:nPaths)' - 1 + rand(nPaths,1))/nPaths; % Stratified uniforms in each bin.
WT = norminv(U) * sqrt(T); % Stratified Brownian motion.

plot(sampleTimes, X), hold('on')
xlabel('Time (Years)'), ylabel('Brownian State')
title('Terminal Stratification: Standard Brownian Motion')
plot(T, WT, '. black', T, WT, 'o black')
hold('off')

Notice that the last value of each sample path (i.e., the last row of the output array X) exactly coincides
with the corresponding element of the stratified terminal value of the Brownian motion. This occurs
because the simulated model and the noise generation function both represent the same standard
Brownian motion.

However, the same stratified sampling function may also be used to stratify the terminal price of constant-
parameter geometric Brownian motion models. In fact, the stratified sampling function may be used to
stratify the terminal value of any constant-parameter model driven by Brownian motion, provided the
model's terminal value is a monotonic transformation of the terminal value of the Brownian motion.

To illustrate this, assume we wish to simulate risk-neutral sample paths of the FTSE 100 index using a
geometric Brownian motion (GBM) model with constant parameters,

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (42 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

in which Euribor yields represent the risk-free rate of return. Furthermore, assume we wish to annualize
the relevant information derived from the daily data, and that each calendar year is composed of 252
trading days.

returns = price2ret(SDE_Data.UK); % daily log returns of FTSE 100
sigma = std(returns) * sqrt(252); % annualized volatility
rate = SDE_Data.Euribor3M;
rate = mean(360 * log(1 + rate)); % continuously-compounded, annual yield

Now create the GBM model assuming the FTSE 100 starts at 100, determine the sample times, and
simulate the price paths,

obj = gbm(rate, sigma, 'StartState', 100);
nSteps = 1;
sampleTimes = cumsum([obj.StartTime ; dt(ones(nPeriods * nSteps,1))/nSteps]);
z = stratifiedExample(nPaths, sampleTimes);

randn('state', 10), rand('state', 0)
[Y, Times] = obj.simBySolution(nPeriods , 'nTrials' , nPaths, ...
 'DeltaTime', dt, 'nSteps', nSteps, 'Z', z);
Y = squeeze(Y); % Re-order the 3-D output to a 2-D equivalent array.

figure, plot(Times, Y)
xlabel('Time (Years)'), ylabel('Index Level')
title('FTSE 100 Terminal Stratification: Geometric Brownian Motion')

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (43 of 44)5/11/2007 2:50:48 PM

A Preview of Monte Carlo Simulation Tools

Although the terminal value of the Brownian motion shown in the first graph is normally-distributed, and
the terminal price in the second graph is lognormally-distributed, notice the similarity between the
corresponding paths of each graph.

As in the antithetic sampling example, this example could avoid outputs entirely provided the user
specifies an end-of-period processing function to query the terminal state, thereby dramatically reducing
memory usage.

Copyright 1999-2007 The MathWorks, Inc.
Published with MATLAB® 7.4

file:///C|/WINNT/Profiles/richard/Desktop/Milan_Prague/html/MonteCarlo.html (44 of 44)5/11/2007 2:50:48 PM

	Local Disk
	A Preview of Monte Carlo Simulation Tools

