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In recent years, the advent of new regulatory requirements, such as the Basel accord, and the dramatic
growth of computing power have made Monte Carlo simulation an increasingly important and attractive
technigque with numerous applicationsin finance, especially in the area of risk management and derivative
pricing.

More specifically, numerous financial clients have requested additional MATLAB tools to support the
simulation of stochastic differential equations (SDES). To address these requests, The MathWorks has
been actively developing a host of new and enhanced tools to directly support Monte Carlo simulation and
related techniques.

This presentation will preview new functionality specifically related to Monte Carlo simulation, such as:

. SDE simulation, stochastic interpolation, and Brownian bridges

. Variance reduction techniques, including antithetic and stratified sampling
. User-specified random number generators & interfaces

. Extreme value theory (EVT) and piecewise distributions

. Cadlibration and smulation of Gaussian & t copulas

Contents

. Import the Supporting Historical Dataset

. Overview of Stochastic Differential Equations

. Incorporating Dynamic Behavior

. The Brownian Bridge & Stochastic Interpolation

. End-of-Period Processes. Black-Scholes Option Pricing

. User-Specified Random Number Generation: Stratified Sampling

. Pricing American Basket Options Using Copulas & Extreme Value Theory

Import the Supporting Historical Dataset

To support the following presentation, first load adaily historical dataset of 3-month Euribor (converted
to daily effective yield), the closing index levels of representative large-cap equity indices of Canada
(TSX Composite), France (CAC 40), Germany (DAX), Japan (Nikkei 225), UK (FTSE 100), and US
(S& P 500), and corresponding trading dates spanning the interval 07-Feb-2001 to 24-Apr-2006.

There are numerous sources from which the supporting data may be imported into MATLAB, including
various data service providers by way of the Datafeed Toolbox, spreadsheets applications, and directly
from native binary MATLAB files(i.e., MAT-f i | es).

The following code segment uses the Database Toolbox to import the historical dataset. It first makes a
database connection, then opens a cursor, and finally fetches the historical dataformatted as a data
structure.

set dbpref s(' Dat aRet urnFormat', 'structure'
connection = database(' SDE Data', "', "');
cur sor = exec(connection, 'SELECT ALL Dates, Canada, France, Ger many, Japan, UK, US,

Euri bor 3M FROM Si nul ati on_Dat a ORDER BY Dates ASC );
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cur sor = fetch(cursor);
cl ose(cursor), close(connection)

SDE Data = cursor. Data

SDE Data =
Dat es: [1359x1 doubl €]
Canada: [1359x1 doubl e]
France: [1359x1 doubl e]
Germany: [ 1359x1 doubl €]
Japan: [1359x1 doubl €]
UK: [1359x1 doubl €]
US: [1359x1 doubl e]
Euri bor3M [ 1359x1 doubl €]

The following plotsillustrate the data just imported. Specifically, we plot the relative price movements of
each index as well as the Euribor risk-free rate proxy. Notice that the initial level of each index has been
normalized to unity to facilitate the comparison of relative performance over the historical record.

fields = fiel dnanes( SDE_Dat a) ;

dat es = SDE_Dat a. Dat es;

countries = fields(2:end-1);

yi el ds = SDE_Dat a. Euri bor 3M % daily effective yields

yi el ds = 360 * log(l + yields); % conti nuous, annualized yields
for i = length(countries):-1:1

prices(:,i) = SDE Data.(countries{i}); %daily closing prices
end

figure, plot(dates, ret2price(price2ret(prices))), datetick(' x')
x|l abel (' Date'), ylabel ("1 ndex Value'), title ('Normalized Daily |Index Cl osings')
| egend(countries, 'Location', 'NorthWst')

figure, plot(dates, 100 * yields)

datetick('x"), xlabel ('Date'), ylabel (' Annualized Yield (%")
title(' R sk Free Rate (3-Mnth Euribor Continuously-Conpounded)')
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Mormalized Daily Index Closings
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Overview of Stochastic Differential Equations
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The following sections highlight important new features and functionality specifically designed to allow
financial clientsto simulate Stochastic Differential Equations (SDES) in MATLAB.

Interestingly, most clients that participated in MATLAB advisory board/focus group discussions indicated
that they were primarily interested in efficient simulation methods, and were largely content to calibrate
their own models, citing the complexity associated with model calibration as an art rather than a science.

The architecture is completely new and makes extensive use of some of the latest MATLAB language
features, including object oriented programming capabilities built upon the new MATLAB Common
Object System (MCQOS) infrastructure and data encapsul ation using nested functions.

High Level Features

Although many of the following features are discussed below and demonstrated by way of a series of
examples, it useful to highlight some of the more salient features here:

. Euler approximation default simulation method

. Approximate analytic solution for separable geometric Brownian motion and Hull-White/V asicek
models

. Specialized methods for efficient simulation of static, separable Geometric Brownian Motion and
Brownian Motion multivariate models

. Vectorized methods for efficient simulation of static univariate models

. Stochastic interpolation & Brownian bridge simulation methods

. Full support for any combination of static and dynamic model parameters

. Full support for state and Brownian vectors of arbitrary dimensionality

. Optional user-specified random number generation & dependence/correlation structure

. Antithetic sampling

. End-of-period processing/state vector adjustments to perform virtually any type of path-dependent
analysis

. Ability to sample an SDE at intermediate times without reporting those times, improving accuracy
and reducing memory burden

. Ability to avoid storing state and noise time series to improve performance and memory efficiency

General Parametric Specification

The proposed SDE engine allows the simulation of generalized multivariate stochastic processes, and is
designed to provide aflexible and powerful simulation architecture. In addition, the framework provides
severa utilities and model classes, offering users a variety of parametric specifications and interfaces.

The architecture is fully multi-dimensional in the both the state vector as well as the Brownian motion,
and offers users the convenience of linear and mean-reverting drift rate specifications. Most parameters
may be specified as traditional MATLAB arrays or as functions accessible by a common interface,
thereby supporting rather general dynamic/non-linear relationships common in SDE simulations.

Specificaly, the architecture allows users to simulate correlated paths of any number of state variables
driven by a vector-valued Brownian motion of arbitrary dimensionality, thereby approximating the
underlying multivariate continuous-time process by a vector-valued stochastic difference equation.

Consider the following general stochastic differential equation,

dX, = F(t, X, )dt + G(t, X, )dW,
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where X isan NVARS x 1 state vector of process variables (e.g., short rates, equity prices) we wish to
simulate, dW is an NBROWNS x 1 Brownian motion vector (also referred to as a Wiener process), Fisan
NVARS x 1 vector-valued drift rate function, and G is an NVARS x NBROANS matrix-valued diffusion rate
function.

Notice that the drift and diffusion rates, F and G, respectively, are rather general functions of areal-valued
scalar sampletimet and state vector X(t). Also, notice that static (non-time-varying) coefficients are
simply a special case of the more general dynamic (time-varying) situation, in the same manner as a
function may be atrivia constant, e.g., f(t,X) = 4.

The above SDE is quite general, and so it is often useful to implement derived classes which impose
additional structure on the drift and diffusion rate functions.

Consider the following linear drift rate specification,

F(t, X;)= A(t, X)) + B(t, X)X

where A is an NVARS x 1 vector-valued function and B is an NVARS x NVARS matrix-valued function.

Asan dternative, consider adrift rate specification expressed in mean-reverting form,
F(t,X:) = S(t, Xo)[L{t, X¢) — Xy

Sisan NVARS x NVARS matrix-valued function of mean reversion speeds (i.e., rates of mean reversion),
and L isan NVARS x 1 vector-valued function of mean reversion levels (i.e., long run average level).

Similarly, consider the following diffusion rate specification,
G(t, X:) = Dit, XX Nywe, X,)

where D isan NVARS x NVARS diagonal matrix-valued function in which each diagonal element isthe
corresponding element of the state vector raised to the corresponding element of an exponent Alpha,
which isaso an NVARS x 1 vector-valued function. V is an NVARS x NBROWNS matrix-valued function
of instantaneous volatility rates in which each row corresponds to a particular state variable and each
column to a particular Brownian source of uncertainty, and associates the exposure of state variables with
sources of risk.

The parametric specifications for the drift and diffusion rate functions are designed to impose a sense of
structure, more intuitively associating parametric restrictions with familiar models derived from the
general SDE class.

Common Interface and Behavior

As already mentioned, much of the design is driven by adesired look and feel. In fact, most models and
utilities outlined below are MATLAB objects, and share common behavior obtained by intentionally

blurring the lines between methods, user-defined functions, object properties, and fields of traditional data
structures.

Although the following examples elaborate in more detail, it is important to highlight the fact that
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dynamic (i.e., time-varying) behavior is associated with function evaluation. Moreover, this dynamic
behavior is accessible by passing time and state (t,X) to a common, published interface, and is pervasive
throughout the SDE class system. Although this (t,X) interface appears limited, this seemingly smple
function evaluation approach may be used to model or construct powerful analytics, especially when used
with concert with nested functions.

Throughout many of the examples that follow, most model members may be evaluated, or invoked, as
would any MATLAB function. Thus, although it may be helpful to examine and access object membersin
amanner similar to that of data structures, it is often more convenient and useful to think of them as
functions that perform an action.

Incorporating Dynamic Behavior

As previously mentioned, object members are designed to be evaluated asif they were MATLAB
functions accessible by a common interface. This accessibility, in turn, gives users the impression of
dynamic behavior regardless of whether or not the underlying parameters are truly time-varying. Since
members are accessible by a common interface, seemingly simple, linear constructs may in fact represent
complex, non-linear designs.

Moreover, when members are entered as functions object constructors may only verify that they return
arrays of correct size by evaluating them at the initial time and state, but otherwise have no knowledge of
any particular functional form. Thisis both flexible and potentially dangerous.

Most userswill create objects by entering traditional MATLAB arrays that explicitly represent constant
(non-dynamic) parameters, or will need to convert arrays that represent historical time series.

Since time series arrays represent dynamic behavior, and dynamic behavior must be captured by functions
accessible by the (t,X) interface, users will need utilitiesto convert traditional time series arrays into
callable functions of time and state. To address this, a specia conversion function called ts2func (i.e.,
time series to function) is available.

To illustrate dynamic behavior, the following example works with the daily historical dataset of 3-month
Euribor rates and closing levels of the French CAC 40. Assume we wish to simulate risk-neutral sample
paths of the CAC 40 index using a geometric Brownian motion (GBM) model,

dX; = r Xydt + o XpdWy
in which
-
represents evolution of the risk-free rate of return.

Furthermore, assume we wish to annualize the relevant information derived from the daily data, and that
each calendar year is composed of 250 trading days.

clc

dt =1/ 250; %tinme increment = 1 day = 1/ 250 years
returns = price2ret(SDE Data. France); %daily |og returns of CAC 40

sigma = std(returns) * sqrt(250); % annual i zed volatility
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yi el ds
yi el ds

SDE Dat a. Euri bor 3M

Now suppose we wish to compare the resulting sample paths obtained from two risk-neutral historical
simulation approaches in which the daily Euribor yields serve as a proxy for the risk-free rate of return.

The first approach specifies the risk-neutral return as the sample average of Euribor yields, and therefore
assumes a constant (non-dynamic) risk-free return.

nPeri ods = | ength(yields); % # of simnul ated observations

randn('state', 25)
obj = gbm(nmean(yi el ds), diag(sigm), 'StartState', 100)
[ X1, T] = obj.sinulate(nPeriods, 'DeltaTine', dt);

ob) =
Class GBM Ceneralized Geonmetric Browni an Mtion

StartTine: O
StartState: 100
Correlation: 1
Drift: drift rate function F(t, X(t))
Diffusion: diffusion rate function t, X(t))
Sinmul ation: sinmulation nmethod/ function sinByEul er
Return: 0.0278117
Sigma: 0.231875

In contrast, the second approach specifies the risk-neutral return as the historical time series of Euribor
yields, and therefore assumes a dynamic, yet deterministic, rate of return (i.e., this example does not
illustrate stochastic interest rates). To illustrate this dynamic effect, use the ts2func utility,

_‘
1

ts2func(yields, "Tines', (0:nPeriods - 1)'), clc

@ s2func/ vect or 2Functi on

Notice that the ts2func utility packages a specified time series array inside a callable function of time and
state, and also synchronizes it with an optional time vector. For instance,

r (0, 100)

ans =
0. 0470
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evauates the function at (t = 0, X = 100) and returns the first observed Euribor yield. However, notice
that the resulting function may also be evaluated at any intermediate timet and state X,

r(7.5, 200)

ans =
0. 0472

Furthermore, notice that the following command produces exactly the same result when called with time
aone,

r(7.5)

ans =
0.0472

The equivalence of these last two commands highlights some important features of the architecture.

When members are specified as functions, they must evaluate properly when passed a scalar, real-valued
sample time (t) followed by a state vector (X), and generate an array of appropriate dimensions (whichin
thefirst case isascalar constant, and in the second is a scalar, piecewise constant function of time aone).

Notice that there is absolutely no obligation to use either time (t) or state (X). In fact, the caller has no
knowledge of any implementation details. In this respect the architecture is only publishing an interface: it
specifies what the inputs and outputs must be, but otherwise offers users complete flexibility regarding
implementation.

In the current example, the function does indeed evaluate properly when passed time followed by state,
thereby satisfying the minimal requirements. The fact that it also evaluates correctly when passed only
time simply indicates that the function does not require the state vector X. The important point to make is
that it works when passed (t,X)!

Furthermore, notice that the utility ts2func performs a zero-order-hold (ZOH) piecewise constant
interpolation, and that the notion of piecewise constant parameters is pervasive throughout the SDE
architecture.

To complete the comparison, perform the second simulation using the sameinitial random number state,

randn(’' state', 25), clc
obj = gbm(r, diag(sigm), 'StartState', 100)
X2 obj . simul ate(nPeriods, 'DeltaTine' , dt);

obj =
Class GBM Ceneralized Geonetric Browni an Mtion
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StartTine: 0O
StartState: 100
Correlation: 1
Drift: drift rate function F(t, X(t))
Diffusion: diffusion rate function Gt, X(t))
Si mul ation: sinulation nmethod/function sinByEul er
Return: function ts2func/vector2Function
Sigma: 0.231875

Finally, plot the series of risk-free reference rates and compare the two simulation trials,

figure, subplot(2,1,1)

pl ot (SDE _Dat a. Dat es, 100 * vyi el ds)

datetick('x'), xlabel ('Date'), ylabel (' Annualized Yield (%)
title(' R sk Free Rate (3-Mnth Euribor Continuously-Conpounded)"')

subpl ot (2,1, 2)

plot(T, X1, 'red , T, X2, '"blue")

xl abel (' Tine (Years)'), ylabel ('Index Level')

title(' Constant vs. Dynamic Rate of Return: CAC 40')

| egend({' Constant Interest Rates' 'Dynamc Interest Rates'}, 'Location', 'Best')
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Notice that the paths are quite close, but not identical. The blue line in the bottom plot uses all the
historical Euribor data, and illustrates asingle trial of an historical simulation.

The Brownian Bridge & Stochastic Interpolation

Many applications involve post-processing of simulated paths, and may require knowledge of the state
vector at intermediate sample times initially unavailable. One way to approximate these intermediate
states is to perform some sort of deterministic interpolation. However, deterministic interpolation
techniques fail to capture the correct probability distribution at these intermediate times.

A better technique that captures the correct joint distribution performs a Brownian, or stochastic,
interpolation by sampling from a conditional Gaussian distribution. This sampling technique is sometimes
referred to as a Brownian bridge.

For reference, notice that all simulation methods require users to specify atime grid by specifying the
number of periods, optionally augmented with a scalar or vector of strictly positive time increments, and a
number of intermediate time steps. The combination of these, together with aninitial sample time
associated with the object, uniquely determines the sequence of times at which the state vector is sampled.
Thus, smulation methods traverse the time grid from beginning to end (i.e., from left to right).

In contrast, interpolation methods allow the time grid to be traversed in any order, allowing both forward
and backward movements in time. To do so, they allow users to specify a vector of interpolation times,
the elements of which are not required to be unique.

Since samples may be generated in any order, atraditional Monte Carlo simulation is just a special case of
interpolation: an open-ended interpolation that involves sampling from a Gaussian distribution
conditioned on the previous state aone.

Note that many references define The Brownian Bridge as a conditional simulation combined with a
scheme for traversing the time grid, effectively merging 2 distinct algorithms. In contrast, the
interpolation method offered here provides additional flexibility by intentionally separating the
algorithms.

One popular agorithm for moving about atime grid involves an initial Monte Carlo simulation to sample
the state at the terminal time, then successively sampling intermediate states by stochastic interpolation.
This agorithm allows the first few samples to determine the overall behavior of the paths, while later
samples progressively refine the structure. Such algorithms are often cited as variance reduction
techniques.

This agorithm is particularly simple when the number of interpolation timesis apower of 2. In this case,
each interpolation falls midway between 2 known states, refining the interpolation in a manner similar to
bi-section. The following example highlights the flexibility of refined interpolation by implementing this
popular power-of-two algorithm.

To illustrate this approach, we again work with the daily series of 3-month Euribor rates.

clf, plot(SDE Data.Dates, 100 * SDE Data. Euri bor3M
datetick('x'"), xlabel ('Date'), ylabel('Daily Yield (%")
title('3-Month Euribor as a Daily Effective Yield')
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Now consider fitting a simple univariate Vasicek model to the daily equivalent yields of the 3-month
Euribor data,

dX, = 5(t, Xo)[L(t, X;) — X,|dt + V (¢, X, )dW,
in which

StX) =8 Lt X)=L V(t,X)=0c

are scalar constants. Given initial conditions, the distribution of the short rate at sometime T in the future
is Gaussian with mean

E(XT) = Xoe T + L{1 — e~ 5T)
and variance
Var(Xry) = 6*(1 — f._ﬁﬁr;l_.-"‘l.ﬁ'

To calibrate this ssmple short rate model, re-write the model in more familiar regression format,

file:/lICY/WINNT/Profiles/richard/Desktop/Prague Spring 2008/html/MonteCarlo_SDE.html (11 of 36)5/16/2008 11:43:27 AM



Simulation & Stochastic Differential Equations

in which

ye = dX;, o = SLdt,

i3 Sdt,

and perform an ordinary linear regression in which the model volatility is proportional to the standard

error of theresiduals,

o= +/Var(e)/dt

yi el ds
regressors

[ coefficients,

dt

speed
| evel
si gna

1.

SDE _Dat a. Euri bor 3M
[ones(length(yields) - 1, 1) yields(1l:end-1)];

intervals, residuals] = regress(diff(yields), regressors);

%tinme increnent = 1 day

-coefficients(2) / dt;
-coefficients(1l) / coefficients(2);
std(residuals) [/ sqrt(dt); clc

Now create a HWV object with an initial StartState set to the most recently observed short rate,

obj = hw/(speed

obj =

, level, sigma, 'StartState', yields(end))

Cl ass HW/: Hul | - Whi t e/ Vasi cek

StartTi nme:
Start St at e:
Correl ation:
Drift:

Di ffusion:
Si mul ati on:
Si gna:
Level :
Speed:

7. 70408e- 005

1

drift rate function F(t, X(t))
diffusion rate function Gt, X(t))

si mul ati on net hod/function sinByEul er
4.77637e- 007

6. 00424e- 005

0. 00228854

Assume, for example, we wish to simulate the fitted model over 64 trading days (a power of 2), but using
arefined Brownian bridge with the power-of-two algorithm instead of the usual beginning-to-end Monte
Carlo simulation approach.

Furthermore, assume that the initial time and state coincide with those of the last available observation of
the historical data, and the terminal state is the expected value of the Vasicek model 64 days into the
future. In this case, we may assess the behavior of various paths that all share the same initial and terminal
states, perhaps to support pricing path-dependent interest rate options over a 3-month interval.
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The following code segment creates a vector of interpolation times to traverse the time grid by moving
both forward and backward in time. Specifically, the first interpolation time is set to the most recent short
rate observation time, the second interpolation time is set to the terminal time, then subsequent
interpolation times successively sample intermediate states.

T = 64; % Termnal tine in 64 days (periods)
times = (1:T)"; % Sanpl e tinmes re-arranged by the bridge
t = NaN(length(times) + 1, 1); % Pre-allocate the interpolation tines
t(1) = obj. StartTi ne; % 1st time = | ast observation tinme
t(2) =T % 2nd time = termnal tine
delta =T,
j Max = 1;
i Count = 3;
for k = 1:1092(T)
i = delta / 2;
for j = 1:jMx
t(iCount) = times(i);
[ =i + delta;
i Count = i Count + 1;
end
jMax = 2 * j Max;
delta = delta / 2;
end

It isinstructive to examine the sequence of interpolation times generated by this popular algorithm,

stem(1:length(t), t, "filled)
x|l abel (' I ndex'), ylabel ('Interpolation Tinme (Days)')
title (' Sanpling Schene for the Power-of-Two Al gorithm)
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Sampling Scheme for the Power-of-Two Algorithm
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Notice that the first few samples are widely-separated in time and determine the course structure of the
paths, while later samples are closely-spaced and progressively refine the detailed structure.

Now that the sequence of interpolation times has been generated, initialize a course time series grid to
initiate the interpolation. The sampling process begins at the last observed time and state taken from the
historical short rate series, and ends 64 days into the future at the expected value of the Vasicek model
derived from the calibrated parameters.

aver age
X

obj.StartState * exp(-speed * T) + level * (1 - exp(-speed * T));
[obj. StartState ; average];

Now generate 5 sample paths setting the Refine input flag to TRUE, indicating that each new interpolated
state is inserted into the time series grid as it becomes available. Notice that interpolation is performed on
atrial-by-trial basis, and since the input time series X has 5 trials (each page of the 3-D time series
represents an independent trial), the interpolated output series 'Y has 5 pages too.

nTrials = 5;
randn('state', 0)

Y = obj.interpolate(t, X(:,:,ones(nTrials,1)), 'Tines'" , [obj.StartTime T],
"Refine', true);

Finally, plot the resulting sample paths. Since the interpolation times are not monotonically increasing,
sort the times and re-order the corresponding short rates.
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[t,i] = sort(t);

Y = squeeze(Y);

Y = Y(i,:);

plot(t, 100 * Y), hold(' on")

plot(t([1 end]), 100 * Y([1 end],1), '. black', 'MarkerSize', 20)

x|l abel (" Interpolation Time (Days into the Future)')
ylabel (" Yield (%9"), hold( off")
title ('Euribor Yields Obtained by Browni an Bridge Interpolation')

« 107 Euribor Yields Obtained by Brownian Bridge Interpolation

B T T T T T T

Yield (%)

?’1 | | | | |
0 10 20 30 40 50 B0 70
Interpolation Time (Days into the Future)

The short rates shown above represent alternative sample paths that share the same initial and terminal
values, and illustrate a special, albeit simplistic, case of a broader sampling technique known as stratified
sampling. For amore sophisticated example of stratified sampling, see User-Specified Random Number
Generation: Stratified Sampling.

Although this simple example simulated a univariate Vasicek interest rate model, it is applicable to
problems of any dimensionality.

End-of-Period Processes: Black-Scholes Option Pricing

All simulation and interpolation methods allow users to specify a sequence of functions, or background
processes, to evaluate at the end of every sample time. These functions are specified as callable functions
of time and state, and must return an updated state vector X,
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X, = F(t, X))

If more than one processing function is specified, they must be entered as a cell array of functions, and are
invoked in the order found in the cell array.

Notice that processing functions are not obligated to use time (t) or state (X), nor are they required to
update or change the input state vector in any way. In fact, simulation/interpolation methods have no
knowledge of any implementation details, and in this respect only adhere to a published interface.

At first glance, the presence of such processing functions may seem strange, yet they offer usersa
powerful modeling tool with applications limited only by the imagination. Such functions allow usersto,
for example, specify boundary conditions, accumulate statistics, plot graphs, and price path-dependent
options.

Moreover, processing functions also allows users to avoid simulation outputs altogether.

As an example, consider pricing a European stock option by Monte Carlo simulation within a Black-
Scholes-Merton framework. Assume the following characteristics:

. stock iscurrently trading at 100

. stock pays no dividends

. stock volatility is 50% per annum

. option strike priceis 95

. option expiresin 3 months

. risk-freerateis constant at 10% per annum

To solve this problem, model the evolution of the underlying stock by a univariate geometric Brownian
motion (GBM) model with constant parameters,

dX, = 01 X,dt + 0.5X,dW,

Furthermore, assume we are interested in simulating the stock price on adaily basis, and that each
calendar month is composed of 21 trading days.

stri ke = 95; % exerci se price

rate = 0.1, % annual i zed risk-free rate

si gma = 0.5; % annual i zed vol atility

dt =1/ 252; %time increnent = 1 day = 1/252 years

nPeri ods = 63; % # of sinulation periods in 3 nonths = 63 tradi ng days
T = nPeriods * dt; %tine to expiration = 3 nonths = 0.25 years

obj = gbm(rate, sigma, 'StartState', 100);

The goal isto simulate independent paths of daily stock prices, and calculate the price of European
options as the risk-neutral sample average of the discounted terminal option payoff at expiration 63 days
from now. This example calculates option prices by two approaches.

The first approach performs a traditional Monte Carlo simulation, explicitly requesting the simulated
stock paths as an output. These output paths are then post-processed to price the options.
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The second approach specifies an end-of-period processing function, accessible by time and state, which
records the terminal stock price of each sample path. This processing function isimplemented as a nested
function with access to shared information.

Before simulation, first invoke the example file to access the end-of -period processing function,

clc
nTrials = 2000; % # of independent trials (i.e., paths)
f = bl ackSchol esExanpl e(nPeri ods, nTri al s)

Bl ackSchol es: @l ackSchol esExanpl e/ saveTer m nal St ockPri ce
Call Price: @l ackSchol esExanpl e/ getCallPrice
Put Price: @l ackSchol eskExanpl e/ get Put Pri ce

Now simulate independent trials (sample paths). Notice that the simulated stock price paths are requested
as an output and that an end-of-period processing function is specified,

randn(' state', 0)

X = obj.sinmBySol ution(nPeriods, '"DeltaTine', dt, '"nTrials', nTrials,
"Processes', f.BlackScholes); clc

Now calculate the option prices directly from the simulated stock price paths. Since these are European
options, the following code segment simply ignores all intermediate stock prices,

call = nmean(exp(-rate * T) * max(squeeze(X(end,:,:)) - strike, 0))
put = nean(exp(-rate * T) * max(strike - squeeze(X(end,:,:)), 0))
call =

14. 2566
put =

6. 0388

Now price the options indirectly by invoking the nested functions found in the structure of function
handles,

f.Call Price(strike, rate)
f.PutPrice (strike, rate)

ans =
14. 2566
ans =
6. 0388
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For reference, the theoretical call and put prices computed from the Black-Scholes option formulas are
13.6953 and 6.3497, respectively.

Although the same option prices are obtained, the latter approach works directly with the terminal stock
prices of each sample path, and is therefore much more memory efficient. In fact, in this example thereis
no compelling reason to request an output at all.

Although thisis arather simplistic example, it illustrates several important features.

First, notice that the Black-Scholes example file consists of several utility functions nested within an
outer, or primary, function. The outer function is invoked with problem-specific parameters needed to
initialize and pre-allocate information shared by the nested functions and retained from one call to the
next.

In other words, we have effectively created an object that encapsulates information and allows users to
access and manipulate this information by invoking nested functions. In fact, the same effect could have
been implemented by formally designing a class and creating an object with various methods, but a
simple structure with nested functions offers a convenient aternative.

In this respect, the outer function does not cal culate anything per se, but rather posts shared information.
The output is not option prices, but rather a data structure whose fields encapsul ate the details of the
nested functions. The user is then able to access, update, and manipulate this shared information by
invoking nested functions, at least one of which must be accessible by the (t,X) interface.

User-Specified Random Number Generation: Stratified Sampling

All simulation methods allow users to directly specify the random noise process used to generate the
Brownian motion vector (Wiener process) which, in turn, drives the Monte Carlo simulation. Noise
processes must aso be specified as a callable functions of time and state,

zn = Z(t, X3)

Similar to antithetic sampling, stratified sampling is also a variance reduction technique, yet operates by
constraining a proportion of sample paths to specific subsets, or strata, of the sample space rather than
inducing negative dependence between paired samples.

Specifically, this example specifies a noise function to stratify the terminal value of a univariate equity
price series. Starting from known initial conditions, the function first stratifies the terminal value of a
standard Brownian motion, then samples the process from beginning to end by drawing conditional
Gaussian samples viaa Brownian bridge.

The stratification assumes that each path is associated with a single stratified terminal value such that the
number of pathsis equal to the number strata, a technique referred as proportional sampling. This
exampleis similar to that found in The Brownian Bridge & Sochastic Interpolation, yet more
sophisticated.

Since stratified sampling requires knowledge of the future, it also requires more sophisticated time
synchronization. Specificaly, the example function requires knowledge of the entire sequence of sample
times.

The function implements proportional sampling by partitioning the unit interval into bins of equal
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probability by first drawing a random number uniformly distributed in each bin. These stratified uniform
draws are then transformed by the inverse cumulative distribution function of a standard N(0,1) Gaussian
distribution. Finally, the resulting stratified Gaussian draws are scaled by the square root of the terminal
time to stratify the terminal value of the Brownian motion.

Notice that the noise function above does not return the actual Brownian paths, but rather the Gaussian
draws Z(t,X) that drive it. Since the simulation method will scale Z(t,X) by the square root of the current
time increment dt , the function divides by the square root of dt .

To introduce the sampling technique, suppose we wish to stratify the terminal value of aunivariate, zero-
drift, unit-variance-rate Brownian motion (BM) model,

dX, = dW,

Furthermore, assume we are interested in simulating 10 paths of the process on adaily basis over a3
month period, and that each calendar month and year is composed of 21 and 252 trading days,
respectively,

clc, randn('state', 10), rand('tw ster', 0)

dt =1/ 252; %tinme increment = 1 day = 1/ 252 years

nPeri ods = 63; % # of sinmulation periods in 3 nonths = 63 trading days
T = nPeriods * dt; %tine to expiration = 3 nonths = 0.25 years

nPat hs = 10; % # of simnulated paths

obj = bm(0, 1, 'StartState', 0);

sanpl eTi mes = cunsum([obj. StartTine ; dt(ones(nPeriods,1))]);

z = stratifiedExanpl e(nPat hs, sanpl eTi nes)

Z =

@tratifiedeExanpl e/stratifiedSanpling

Now simulate the standard Brownian paths by explicitly passing the stratified sampling function to the
simulation method, and re-order the output sample paths for convenience,

X
X

obj .simul ate(nPeriods, 'DeltaTine', dt, 'nTrials', nPaths, 'Z', 2z);
squeeze(X); % Re-order the 3-D output to a 2-D equival ent array.

To verify the stratification, re-create the uniform draws with proportional sampling, transform them to
obtain the terminal values of standard Brownian motion, and plot the terminal values and output paths on
the same figure,

rand(' twi ster', 0) % Use the sane initial state.
U = ((1:nPaths)' - 1 + rand(nPaths, 1))/ nPaths; % Stratified uniforns in each bin.
W = norminv(U) * sqgrt(T); % Stratified Browni an notion.

pl ot (sanpl eTi nes, X), hold(' on")
xl abel (' Tine (Years)'), ylabel ('Brownian State')
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title(' Terminal Stratification: Standard Browni an Mtion')
plot(T, WI, '. black', T, WI, "o black")
hol d(" of f")

Terminal Stratification: Standard Brownian Motion
15 T T T T

Brownian State

| | | |
0 0.05 0.1 0.15 0.2 0.25
Time (Years)

-1.4

Notice that the last value of each sample path (i.e., the last row of the output array X) exactly coincides
with the corresponding element of the stratified terminal value of the Brownian motion. This occurs
because the simulated model and the noise generation function both represent the same standard

Brownian motion.
However, the same stratified sampling function may also be used to stratify the terminal price of constant-
parameter geometric Brownian motion models. In fact, the stratified sampling function may be used to

stratify the terminal value of any constant-parameter model driven by Brownian motion, provided the
model's terminal value is a monotonic transformation of the terminal value of the Brownian motion.

To illustrate this, assume we wish to simulate risk-neutral sample paths of the FTSE 100 index using a
geometric Brownian motion (GBM) model with constant parameters,

dX, = r X,dt + o X dW,

in which Euribor yields represent the risk-free rate of return. Furthermore, assume we wish to annualize
the relevant information derived from the daily data, and that each calendar year is composed of 252

trading days.

returns = price2ret (SDE_Data. UK) ; %daily log returns of FTSE 100
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si gma = std(returns) * sqgrt(252); % annual i zed vol atility
rate = SDE Dat a. Euri bor 3M
rate = mean(360 * log(l + rate)); % cont i nuousl| y- conpounded, annual vyield

Now create the GBM model assuming the FTSE 100 starts at 100, determine the sample times, and
simulate the price paths,

obj = gbm(rate, sigma, 'StartState', 100);

nSt eps = 1;

sanpl eTi mes = cunsun([obj.StartTinme ; dt(ones(nPeriods * nSteps, 1))/ nSteps]);
z = stratifiedeExanpl e(nPat hs, sanpl eTi nes) ;

randn('state', 10), rand('tw ster', 0)

[Y, Times] = obj.sinmBySolution(nPeriods , 'nTrials’ , nhPat hs,
"DeltaTinme', dt, 'nSteps', nSteps, 'Z',
Y = squeeze(Y); % Re-order the 3-D output to a 2-D equival ent array.

figure, plot(Tinmes, Y)
xl abel (" Time (Years)'), ylabel ('1ndex Level")
title(' FTSE 100 Term nal Stratification: Geonetric Brownian Mtion')

FTSE 100 Terminal Stratification: Geometric Browenian kMotion
13':' T T T T
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| | |
0 0.05 0.1 0.15 0.2 0.25
Time (Years)

80

Although the terminal value of the Brownian motion shown in the first graph is normally-distributed, and
the terminal price in the second graph is lognormally-distributed, notice the similarity between the
corresponding paths of each graph.
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Asin the antithetic sampling example, this example could avoid outputs entirely provided the user
specifies an end-of -period processing function to query the terminal state, thereby dramatically reducing
memory usage.

Pricing American Basket Options Using Copulas & Extreme Value Theory

Thisis an advanced example, motivated by a series of related client requests, designed to illustrate some
of the more salient features of the SDE architecture, including

. Customized random number generation functions, including a comparison of Brownian motion
and Brownian copulas

. Customized end-of-period processing functions to form the price of an equity portfolio (basket)
and retain that price series for subsequent option valuation

. Piecewise probability distributions and extreme value theory

. Early exercise of American options on baskets of equity indices, based on the method of Longstaff
& Schwartz.

In recent months several corporate clients, facing increased exposure to the volatility of international
equity markets, have inquired about the ability to model and price an American put option to protect the
value their global portfolio.

Furthermore, severa clients have also recently requested additional information related to modeling the
fat tails of individual asset returns using Extreme Value Theory (EVT), and aggregating the joint
distribution of these disparate asset returns with a Brownian copula. Ideally, they would also like to
examine the impact of the resulting joint distribution on the value of the put as compared to a traditional
multi-variate Brownian motion (i.e., a correlated Gaussian vector scaled by the square root of time).

To address these related requests, this example compares alternative implementations of a separable
multivariate geometric Brownian motion (GBM) process often referred to as a multi-dimensional market
model, and will do so by simulating risk-neutral sample paths of an equity index portfolio driven by
correlated random draws derived from a Gaussian distribution, a Gaussian copula, and at copula.

The risk-neutral market model we want to smulateis
dX; = r Xpdt + o X dW,

in which the risk-free rate is assumed constant over the life of the option. Notice that any dividend yields
are ignored to simplify the model and data collection.

Since thisis a separable multi-variate model, the risk-free return, r, is a diagonal matrix in which the same
riskless return is applied to all indices.

In contrast, the specification of the exposure matrix, sigma, depends upon whether the driving source of
uncertainty is modeled directly as a Brownian mation (i.e., correlated Gaussian random numbers
implicitly mapped to Gaussian margins) or derived from a Brownian copula (i.e., correlated Gaussian or t
random numbers explicitly mapped to semi-parametric margins).

Overview of the Modeling Framework

The ultimate objective of this analysisis a comparison of basket option prices derived from various noise
processes. The first noise processis atraditional Brownian motion model in which the price (i.e., level) of
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each individual asset (i.e., equity index) is driven by correlated Gaussian random draws.

As alternatives, the Brownian motion benchmark is compared to noise processes driven by Gaussian and
Student's t copulas, referred to collectively as a Brownian copula. These copula draws produce dependent
random variables, which are then transformed to individual variables (i.e., the margins) by a semi-
parametric probability distribution with generalized Pareto tails tailored to the historical record of each
index.

A copulaisamulti-variate cumulative distribution function (CDF) with uniformly-distributed margins.
Although the theoretical foundations were established decades ago, copulas have experienced a
tremendous surge in popul arity over the last few years, primarily as atechnique for modeling non-
Gaussian portfolio risks.

Although numerous families exist, al copulas represent a statistical device for modeling the dependence
structure between 2 or more random variables. In addition, important statistics, such asrank correlation
and tail dependence, are properties of a given copula and are unchanged by monotonic transforms of its
margins.

Since the CDF and inverse CDF (i.e., quantile function) of univariate distributions are both monotonic
transforms, a copula provides a very convenient technique to simulate dependent random variables with
dissimilar and arbitrarily-distributed margins. Moreover, since a copula defines a given dependence
structure irrespective of its margins, calibration istypically much easier than estimating the joint
distribution function.

Once sample paths have been simulated, the options are priced by the least squares regression method of
Longstaff & Schwartz (see Valuing American Options by Smulation: A Smple Least-Sguares Approach,
The Review of Financial Studies, Spring 2001). This approach uses least squares to estimate the expected
payoff of an option if not immediately exercised, doing so by regressing the discounted option cash flows
received in the future on the current price of the underlier associated with all in-the-money sample paths.
The continuation function is estimated by athird order polynomial in which all cash flows and prices
involved in the regression are normalized by the option strike price improve numerical stability.

To illustrate the modeling framework, we first characterize the distribution of each margin. Although the
distribution of each index return series may be characterized parametrically, it is often useful to fit a semi-
parametric approach using a piecewise distribution with generalize Pareto tails, which makes use of
Extreme Value Theory to better characterize the behavior in each tail.

Extreme Value Theory & Piecewise Probability Distributions

In recent years, numerous financial clients have requested additional functionality related to the use of
Extreme Value Theory, a statistical tool for modeling the fat-tailed behavior of financial data such asset
returns and insurance | osses.

In response, 2 univariate probability distributions are now supported by the Statistics Toolbox:

. Generalized Extreme Value (GEV) distribution, which lendsitself to a modeling technique known
as the block maxima or minima method. In this approach, an historical dataset is divided into a set
of sub-intervals, or blocks, and the largest or smallest observation in each block is recorded and
fitted to a GEV distribution.

. Generalized Pareto (GP) distribution, which lends itself to a modeling technique known as the
distribution of exceedances or peaks over threshold method. In this approach, an historical dataset
is sorted, and the amount by which those observations which exceed a specified threshold is fitted
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to a GP distribution.

Since the latter approach is more popular in risk management applications, the following analysis
highlights the Pareto distribution.

In particular, suppose we wish to provide a complete statistical description of the probability distribution
of daily asset returns of any one of the equity indices. Furthermore, assume that this description is
provided by a piecewise semi-parametric distribution in which the asymptotic behavior in each tail is
characterized by a generalized Pareto distribution.

Ultimately, the copulawill be used to generate random numbers to drive the simulation. The CDF and
inverse CDF transforms will capture the volatility of ssmulated returns as part of the diffusion term of the
SDE, but the mean return of each index is governed by the riskless rate and incorporated in the drift term
of the SDE. For this reason, the following code segment centers the returns (i.e., extracts the mean) of
each index.

Since the following analysis applies extreme value theory to characterize the distribution of each
individual equity index return series, it is helpful to examine the details for a particular country. The code
segment below can be changed to examine the details for any country.

returns = price2ret(prices); % Logarithm c returns.
returns = bsxfun(@ri nus, returns, nean(returns)); % Center the returns.

nl ndi ces = size(returns, 2); % # of i ndices.

i ndex = strmatch(' Gernmany', countries); if isenpty(index), index = 1; end

figure, plot(dates(2:end), returns(:,index)), datetick(' x')
x|l abel (' Date'), ylabel (' Return')
title(['Daily Logarithmc Centered Returns: ' countries{index}])
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Daily Logarithmic Centered Returns: Germany
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Given the centered returns shown above, estimate the empirical, or non-parametric, CDF of each index
with a Gaussian kernel. This smoothes the CDF estimates, eliminating the staircase pattern of unsmoothed
sample CDFs. Although non-parametric kernel CDF estimates are well suited for the interior of the
distribution where most of the datais found, they tend to perform poorly when applied to the upper and
lower tails. To better estimate the tails of the distribution, apply EVT to those returns that fall in each tail.

Specificaly, find upper and lower thresholds such that 10% of the returnsis reserved for each tail. Then
fit the amount by which those extreme returnsin each tail fall beyond the associated threshold to a
parametric GP distribution by maximum likelihood.

The following code segment creates objects of type par etotails, one such object for each index return
series. These Pareto tail objects encapsulate the estimates of the parametric GP lower tail, the non-
parametric kernel-smoothed interior, and the parametric GP upper tail to construct a composite semi-
parametric CDF for each index.

The resulting piecewise distribution object allows interpolation within the interior of the CDF and
extrapolation (function evaluation) in each tail. Extrapolation is very desirable, allowing estimation of
guantiles outside the historical record, and isinvaluable for risk management applications.

Moreover, Pareto tail objects also provide methods to evaluate the CDF and inverse CDF (quantile
function), and to query the cumulative probabilities and quantiles of the boundaries between each segment
of the piecewise distribution.

Also, notice that collections of Pareto tail objects are stored in cell arrays, high-level MATLAB data
containers designed to store disparate data types.
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tail Fraction = 0. 1; % decimal fraction allocated to each tail
oBJ = cell(nlndices,1); %cell array of Pareto tail objects
for i = 1:nlndices
OBJ{i} = paretotails(returns(:,i), tailFraction, 1 - tailFraction, 'kernel");
end
Having estimated the three distinct regions of the piecewise distribution, graphically concatenate and
display the result. Again, note that the lower and upper tail regions, displayed in red and blue,
respectively, are suitable for extrapolation, while the kernel-smoothed interior, in black, is suitable for
interpolation.
The code below calls the CDF and inverse CDF methods of the Pareto tails object of interest with data
other than that upon which the fit is based. Specificaly, the referenced methods have access to the fitted
state, and are now invoked to select and analyze specific regions of the probability curve, acting asa
powerful data filtering mechanism.
For reference, the plot also includes a zero-mean Gaussian CDF of the same standard deviation. In some
sense, the variation in options prices may be thought of as the extent to which the distribution of each
asset differs from this normal curve.
figure, hold('on"), grid(' on")
m nProbability = OBJ{index}.cdf ((m n(returns(:,index))));
maxProbabi lity = OBJ{i ndex}.cdf ((max(returns(:,index))));
pLower Tail = linspace(m nProbability , tail Fraction , 200); % | ower tail
pUpperTail = linspace(l - tail Fraction, maxProbability , 200); % upper tail
plnterior = linspace(tail Fraction , 1 - tailFraction, 200); % interior
pl ot (OBJ{i ndex}.icdf (pLowerTail), pLowerTail, 'red , 'LineWdth' 6 2)
pl ot (OBJ{i ndex}.icdf (plnterior) , plnterior , 'black', "LineWdth,6 2)
pl ot (OBJ{i ndex}.icdf (pUpperTail), pUpperTail, 'blue" , "LineWdth 6 2)
limts = axis; x = linspace(limts(1l), limts(2));
pl ot (x, norntdf(x, 0, std(returns(:,index))), 'green', 'LineWdth' k6 2)
x|l abel (' Centered Return'), ylabel (' Probability")
title (['Sem -Paranetric/Piecewise CDF: ' countries{index}])
| egend({' Pareto Lower Tail' 'Kernel Snoothed Interior'
"Pareto Upper Tail' 'CGaussian with Sane \sigma'}, 'Location', 'NorthWst')
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Copula Calibration

The Statistics Toolbox includes functionality specifically related to the calibration and simulation of
Gaussian and t copulas.

Given the daily index returns from above, now estimate the parameters of the Gaussian and t copulas
using the Statistic Toolbox function copulafit. Since at copula becomes a Gaussian copula as the scalar
degrees of freedom parameter (DoF) becomes infinitely large, the two copulas are really of the same
family, and therefore share alinear correlation matrix as afundamental parameter.

Although calibration of the linear correlation matrix of a Gaussian copulais straightforward, the
calibration of at copulais more difficult. For this reason, the Statistics Toolbox offers 2 techniques to
calibrate at copula.

The first technique performs maximum likelihood estimation (MLE) in atwo-step process. The inner step
maximizes the log-likelihood with respect to the linear correlation matrix, given afixed value for the
degrees of freedom. That conditional maximization is placed within a 1-D maximization with respect to
the degrees of freedom, thus maximizing the log-likelihood over all parameters. The function being
maximized in this outer step is known as the profile log-likelihood for the degrees of freedom.

The second technique is derived by differentiating the log-likelihood function with respect to the linear
correlation matrix, assuming the degrees of freedom is afixed constant. The resulting expression is a non-
linear equation that can be solved iteratively for the correlation matrix. This technique approximates the
profile log-likelihood for the degrees of freedom parameter for large sample sizes. Thistechniqueis
usually significantly faster than the true maximum likelihood technique outlined above, however, it
should be used with caution because the estimates and confidence limits may not be accurate for small or
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moderate sample sizes.

The code segment below first transforms the daily centered returns to uniform variates by the piecewise,
semi-parametric CDFs derived above, then fits the Gaussian and t copulas to the transformed data. When
the uniform variates are transformed by the empirical CDF of each margin, the calibration method is often
known as canonical maximum likelihood (CML).

U = zeros(size(returns));

for i = 1:nlndices

U(:,i) = OBI{i}.cdf(returns(:,i)); % transformeach margin to uniform
end
options statset('Display', 'off', 'Tol X, le-4);

[ rhoT, DoF]
rhoG

copulafit('t', U 'Mthod , 'ApproximteM', 'Options', options);
copul afit(' Gaussian', U); clc

If we examine the estimated correlation matrices, we see that they are quite similar but not identical.

corrcoef(returns) % /linear correlation matrix of daily returns

ans =
1. 0000 0. 4813 0. 5058 0. 1854 0. 4573 0. 6526
0.4813 1. 0000 0. 8485 0. 2261 0. 8575 0. 5102
0. 5058 0. 8485 1. 0000 0. 2001 0. 7650 0.6136
0. 1854 0. 2261 0. 2001 1. 0000 0. 2295 0. 1439
0. 4573 0. 8575 0. 7650 0. 2295 1. 0000 0.4617
0. 6526 0.5102 0. 6136 0. 1439 0.4617 1. 0000
rhoG % | inear correlation matrix of the optim zed Gaussi an copul a
rhoG =
1. 0000 0. 4745 0. 5018 0. 1857 0.4721 0. 6622
0. 4745 1. 0000 0. 8606 0. 2393 0. 8459 0.4912
0. 5018 0. 8606 1. 0000 0. 2126 0. 7608 0. 5811
0. 1857 0. 2393 0. 2126 1. 0000 0. 2396 0. 1494
0.4721 0. 8459 0. 7608 0. 2396 1. 0000 0. 4518
0. 6622 0. 4912 0. 5811 0. 1494 0. 4518 1. 0000
rhoT % Il inear correlation matrix of the optim zed t copul a
rhoT =
1. 0000 0.4671 0. 4858 0. 1907 0.4734 0. 6521

0.4671 1. 0000 0.8871 0. 2567 0. 8500 0. 5122
0. 4858 0.8871 1. 0000 0. 2326 0.7723 0. 5877
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0. 1907 0. 2567 0. 2326 1. 0000 0. 2503 0. 1539
0.4734 0. 8500 0.7723 0. 2503 1. 0000 0.4769
0. 6521 0.5122 0. 5877 0. 1539 0.4769 1. 0000

Moreover, notice the relatively low degrees of freedom parameter obtained from the t copula calibration,
indicating a significant departure from a Gaussian situation.

DoF % scal ar degrees of freedom paranmeter of the optimzed t copul a

DoF =
4.8613

Copula Simulation

Now that the copula parameters have been estimated, simulate jointly-dependent equity index returns
using the copular nd function of the Statistics Toolbox.

By extrapolating into the GP tails and interpolating into the smoothed interior, transform the uniform
variates derived from copular nd to daily centered returns via the inverse CDF of each index. These
simulated centered returns are consistent with those obtained from the historical dataset. The returns are
assumed independent in time, but at any point in time possess the dependence and rank correlation
induced by the given copula

To illustrate the dependence structure, the following code segment simul ates centered returns using the t
copula, and plots a 2-D scatter plot with marginal histograms for the French CAC 40 and German DAX
using the scatter hist function of the Statistics Toolbox (the French and German indices were chosen
simply because they have the highest correlation of the available data).

nPoints = 10000; % # of sinmulated observations
randn('state', 0), rand('tw ster', 0)

R = zeros(nPoi nts, nlndices); % pre-all ocate sinulated returns array
U= copularnd('t', rhoT, DoF, nPoints); % simulate U 0,1) fromt copul a
for j = 1:nlndices
R(:,j) = OBI{j}.icdf (U(:,]));
end

figure, h = scatterhist(R(:,2), R(:,3));

set (findobj (h(1), 'Type', 'line'), 'marker', "."', 'color', 'red', 'markerSize', 1)
yl = get(h(1), "ylim); y3 = get(h(3), "ylim);

set(h(1), '"xlim, [-.2 .1], "ylim, [-.1 .1])

set(h(2), "xlim, [-.1 .1])
set(h(3), "ylim, [(y3(1) + (-0.1 - y1(1))) (y3(2) + (0.1 - y1(2)))])
x|l abel (' France'), ylabel (" Germany'), title(['t Copula (\nu ="' nunRstr(DoF,2) ")'])
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t Copula (v =4.9)
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Now simulate and plot centered returns using the Gaussian copula

randn('state', 0), rand('twi ster', 0)

R = zeros(nPoi nts, nlndices); % pre-all ocate sinulated returns array
U = copul arnd(' Gaussi an', rhoG nPoints); %sinmulate U0,1) from Gaussian copul a
for j = 1:nlndices

R(:,j) = OBI{j}.icdf(U(:,]));
end

figure, h = scatterhist(R(:,2), R(:,3));

set (findobj(h(1), 'Type', 'line'), '"marker', '.', 'color', 'red, 'markerSize', 1)
yl = get(h(1), 'ylinl); y3 = get(h(3), "ylin);

set(h(1), 'xlim, [-.2 .1], "ylim, [-.21 .1])

set(h(2), "xlim, [-.1.1])

set (h(3), "ylint, [(y3(1) + (-0.1- y1(1))) (y3(2) + (0.1 - y1(2)))])

x| abel (' France'), ylabel (' Germany'), title(' Gaussi an Copul a')
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Gaussian Copula
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France

Now examine the 2 figures just created. In particular, notice the remarkable similarity between the
miniature histograms on the corresponding axes of each figure. This similarity is no coincidence.

Since both copulas simulate uniform random variables, which are then transformed to daily centered
returns by the inverse CDF of the piecewise distribution of each index, the simulated returns of any given
index areidentically distributed regardless of the copula. However, the scatter graph of each figure
indicates the dependence structure associated with the given copula, and in contrast to the uni-variate
margins shown in the histograms, the scatter graphs are quite distinct.

Once again, the copula defines a dependence structure irrespective of its margins, and therefore offers
many appealing and convenient features not limited to calibration alone.

For reference, now simulate and plot centered returns using the Gaussian distribution which underlies the
traditional Brownian motion model.

R = nvnrnd(zeros(1, nlndices), cov(returns), nPoints);

figure, h = scatterhist(R(:,2), R(:,3));

set (findobj (h(1), 'Type', 'line'), '"marker', '.', 'color', 'red, 'markerSize', 1)
yl = get(h(1), "ylim); y3 = get(h(3), "ylint);

set(h(1), 'xlim, [-.21 .1], "ylim, [-.1 .1])

set(h(2), "xlim, [-.1.1])

set (h(3), "ylint, [(y3(1) + (-0.1- y1(1))) (y3(2) + (0.1 - y1(2)))])

x| abel (' France'), ylabel (' Germany'), title(' Gaussian Distribution')
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American Option Pricing Using the Longstaff & Schwartz Approach

Now that the copulas have been calibrated, compare the price of an at-the-money American basket option
derived from various approaches. To simply the analysis, assume that all equity indices begin at 100, and
that the basket portfolio holds a single unit, or share, of each index such that the value of the basket
portfolio at any timeisjust the sum of the values of the individual indices.

In what follows, we simulate daily index levels and assume that the option may be exercised at the end of
every day, which approximates the American option as a Bermudan option. We also assume the option
expiresin 3 months.

Furthermore, assume we wish to annualize the relevant information derived from the daily dataillustrated
above, and that each calendar year is composed of 252 trading days. Notice that the same results could
also be obtained by working with unannualized (in this case, daily) centered returns and riskless rates, in
which thetimeincrement dt = 1.

Compute the basic data statistics needed as inputs to simulation methods.

clc

dt

yi el ds
yi el ds
r

X
strike

1/ 252;

SDE Dat a. Euri bor 3M

360 * log(1l + yields);

mean(yi el ds);

repmat (100,
sun( X) ;

nl ndi ces,

1);

%time increnment = 1 day = 1/252 years

% cont i nuousl y- conpounded, annual yield
% hi storical 3M Euri bor average
%initial state vector

%initialize an at-the-nmoney basket
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nTrials
nPeri ods

200; % # of independent trials (i.e., sanple paths)
63; % # of sinulation periods: 63/252 = 0.25 years = 3 nonths

Now create two separable (i.e., the riskless return and volatility exposure are both diagonal matrices)
multi-dimensional market models.

While both are diagonal GBM models with identical risk-neutral returns, the first is driven by a correlated
Brownian motion and explicitly specifies the sample linear correlation matrix of centered returns. This
correlated Brownian motion process is then weighted by a diagonal matrix of annualized index volatilities
or standard deviations.

As an dternative, the same model could be driven by an uncorrelated Brownian mation (i.e., standard
Brownian motion) by specifying thecor r el at i on asan identity matrix or simply accepting the
default. In this case, the exposure matrix si gna would be specified as the lower Cholesky factor of the
index return covariance matrix. Since the copul a-based approaches simulate dependent random numbers,
the diagonal exposure form is chosen for consistency.

Si gma = std(returns) * sqgrt(252); % annual i zed vol atility

correlation = corrcoef(returns); % correl at ed Gaussi an di st urbances

GBML = gbn(di ag(r(ones(1,nindices))), diag(sigm), 'StartState', X
"Correl ation' , correlation)

GBML =

Class GBM Ceneralized Geonetric Browni an Mtion

StartTine: 0O
StartState: 100 (6x1 double array)
Correl ation: 6x6 double array
Drift: drift rate function F(t, X(t))
Diffusion: diffusion rate function Gt, X(t))
Si mul ation: sinulation nmethod/function sinByEul er
Return: 6x6 di agonal double array
Si gma: 6x6 di agonal doubl e array

Now create the second model driven by the Brownian copulawith an identity si grma matrix. This may
seem unusual, but this example highlights some of the flexibility of the architecture.

GBM2 = gbn{(di ag(r(ones(1,nlndices))), eye(nlndices), 'StartState', X)

&Bwe =
Class GBM Ceneralized Geonetric Browni an Mtion

StartTinme: O
StartState: 100 (6x1 doubl e array)
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Correl ati on: 6x6 di agonal double array
Drift: drift rate function F(t, X(t))
Diffusion: diffusion rate function Gt, X(t))
Si mul ation: sinulation nmethod/function sinByEul er
Return: 6x6 di agonal double array
Si gma: 6x6 di agonal doubl e array

When working with copulas, it is often convenient to allow the random number generator function Z(t,X)
to induce dependence (of which the traditional notion of linear correlation is a specia case) with the
copula, and to induce magnitude or scale of variation (similar to volatility or standard deviation) with the
semi-parametric CDF and inverse CDF transforms.

This representation is conceptually similar to specifying cor r el at i on as acovariance matrix. Since
the CDF and inverse CDF transforms of each index inherit the characteristics of historical returns, this
also explains why the returns are now centered.

In what follows, statements such as

z = copul aExanpl eSub(returns * sqgrt(252), nPeriods, 'Gussian');
or
z = copul aExanpl eSub(returns * sqrt(252), nPeriods, '"t');

fit the Gaussian and t copula dependence structures, respectively, and the semi-parametric marginsto the
centered returns scaled by the square root of the number of trading days per year (252). Notice that this
scaling does not annualize the daily centered returns per se, but rather scales them such that the volatility
remains consistent with the diagonal annualized exposure matrix si grma of the traditional Brownian
motion model created above.

Now that the objects have been created, simulate independent trials of equity index prices over 3 calendar
months using the default smByEuler method.

In this example, we specify an end-of-period processing function that accepts time followed by state (t,X),
and records the sample times and value of the portfolio as the single-unit weighted average of al indices.
This function a so shares this information with other functions designed to price American put and call
options with a constant riskless rate using the least squares regression approach of Longstaff & Schwartz.

—h
1

| ongst af f Schwar t zExanpl e( nPeri ods, nTri al s)

Longst af f Schwartz: @ ongst af f Schwart zExanpl e/ saveBasket Pri ces
Cal Il Price: @ongstaffSchwartzExanpl e/ getCall Price
Put Price: @ ongstaffSchwartzExanpl e/ get PutPrice
Prices: @ongstaffSchwartzExanpl e/ get Basket Pri ces

Notice that no outputs are requested from the simulation methods; in fact the simulated prices of the
indices underlying the basket option are unnecessary. Also, notice that call option prices are reported for
convenience.
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randn(’' state', 100), rand('twi ster', 100)

GBML. si nByEul er (nPeri ods, 'nTrials’ , NTrials, '"DeltaTine', dt,
"Processes', f.LongstaffSchwart z);

Br owni anMoti onCal | Pri ce
Br owni anMbt i onPut Pri ce

f.CallPrice(strike, r);
f.PutPrice (strike, r);

randn(' state', 100), rand('tw ster', 100)

z = copul aExanpl eSub(returns * sqgrt(252), nPeriods, 'Gaussian');
f = |l ongstaff Schwart zExanpl e(nPeri ods, nTri al s);
GBM2. si nByEul er (nPeriods, 'nTrials’ , NTrials, "DeltaTinme', dt,

"Processes', f.LongstaffSchwartz, 'Z', 2z);

Gaussi anCopul aCal | Pri ce
Gaussi anCopul aPut Pri ce

f.CallPrice(strike, r);
f.PutPrice (strike, r);

Now repeat the copula simulation with the t copula dependence structure. Notice that we use the same
model object for both copulas; only the random number generator and option pricing functions need to be
re-initialized.

randn(’' state', 100), rand('twi ster', 100)

z = copul aExanpl eSub(returns * sqgrt(252), nPeriods, 't');
f = |l ongst af f Schwart zExanpl e(nPeri ods, nTri al s);
GBM2. si nByEul er (nPeriods, 'nTrials" , nTrials, 'DeltaTine', dt,

"Processes', f.LongstaffSchwartz, 'Z', z);

t Copul aCal | Price
t Copul aPut Pri ce

f.CallPrice(strike, r);
f.PutPrice (strike, r);

Finally, compare the American put and call option prices obtained from all models.

clc

disp(" ")

fprintf(’ # of Monte Carlo Trials: 9%8d\n' , NTrials)
fprintf(’ # of Time Periods/Trial: 9%8d\n\n" , nPeri ods)

fprintf(' Brownian Mtion Anerican Call Basket Price: 98.4f\n'

Br owni anMot i onCal | Pri ce)

fprintf(' Brownian Mtion Anerican Put Basket Price: 9%8.4f\n\n',
Br owni anMot i onPut Pri ce)

fprintf(' Gaussian Copula American Call Basket Price: 98.4f\n"
Gaussi anCopul aCal | Pri ce)

fprintf(' Gaussian Copul a Anerican Put Basket Price: 98.4f\n\n',
Gaussi anCopul aPut Pri ce)

fprintf(’ t Copula Anerican Call Basket Price: 98.4f\n' , tCopulaCallPrice)
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fprintf(’ t Copula American Put Basket Price: 9%.4f\n' , tCopul aPutPrice)
# of Monte Carlo Trials: 200
# of Tinme Periods/Trial: 63

Browni an Motion Anerican Call Basket Price: 23. 0427
Browni an Mbtion Anerican Put Basket Price: 17. 0683

Gaussi an Copul a Anerican Call Basket Price: 22.2751
Gaussi an Copul a American Put Basket Price: 18.1843

t Copula Anerican Call Basket Price: 24.0212
t Copula Anerican Put Basket Price: 18.0952

Although instructive, the above analysis represents arelatively small-scale simulation. If the same
analysisis repeated with 100,000 trials, the results are as follows:

# of Monte Carlo Trials: 100000
# of Tinme Periods/Trial: 63

Browni an Motion Anerican Call Basket Price: 20.2214
Br owni an Motion Anerican Put Basket Price: 16. 5355

Gaussi an Copul a American Call Basket Price: 20.6097
Gaussi an Copul a American Put Basket Price: 16.5539

t Copula Anerican Call Basket Price: 21.1273
t Copula Anerican Put Basket Price: 16.6873

Interestingly, the results agree quite closely. In particular, put option prices obtained from copul as exceed
those of Brownian motion by less than 1%.

Copyright 1999-2007 The MathWorks, Inc.
Published with MATLAB® 7.6
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