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Motivation

Macroeconomic models of the yield curve

@ Add macro to the finance arbitrage-free models

o affine models, (Ang-Piazzesi, 2003, 2006; Rudebusch-Wu,
2008);

o Arbitrage-free Nelson-Siegel model
(Christensen-Diebold-Rudebusch, 2008);

@ Bond pricing in DSGE models (Rudebusch-Swanson-Wu,
2006);

Applications:
o forecasting of inflation and real activity;
@ central bank liquidity facilities;

@ great moderation and great conundrum.
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Motivation

The spread on the money market

Policy Rate and Pribor

ar Policy Rate
ES Pribor 1M
sk Pribor 3M
Pribor 6M
Pribor 1Y
2k

3 I I I I I I I I I
2000M1  200IM1  2002M1  2003M1  2004M1  2005M1  2006M1  2007M1  2008M1  2009M1

Spread between Pribor and Policy Rate

Vv

05l L L L L L L I I I
2000M1  200IM1  2002M1 2003M1 2004M1 2005M1 2006M1  2007M1  2008M1  2009M1




Motivation

The spread between government bonds and the 3M Pribor

Yields
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Motivation

The decomposition of the spread

Spread 3M - 2W

0
2005M11 2006M11 2007M11 2008M11 2009M11

Spread 1Y - 2W

05
0
2005M11 2006M11 2007M11 2008M11 2009M11
Spread 1Y - 2W
15 :
1
5
a
05

0
2005M11 2006M11 2007M11 2008M11 2009M11




Motivation

The Fama-Bliss regression

The FAMA-BLISS REGRESSION (AER, 1987):

Excess Return;yy; = o + BSpread, + ;.

@ 3 =0 is implied by the expectation hypothesis of the term
structure.

@ The recently introduced macro-finance term structure models
(affine latent models) have problems if 5 # 0.

Econometric studies usually find that on the low end of the yield
curve B =0, i.e., the expectation hypothesis approximatively holds.
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Motivation

Results of the Fama-Bliss regression for the Czech money
market

Rolling regression (18 months window) of the Fama-Bliss
regression on the Czech data suggest that:

@ up to the second half of 2008, 3 =0

@ (> 0 since then.

See next two figures:
@ Recursive estimation of the coefficient 3 for various maturities,

@ The dynamic prediction of the arbitrage-free version of the
dynamic Nelson - Siegel model
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Motivation

Recursive estimation of Fama-Bliss s
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Theoretical formulation
Numerical filtering

A Quadratic Term Structure Model

A Quadratic Term Structure Model

State equation

As in affine models, the underlying set of macroeconomic factors
follows a VAR process:

Xer1 = OXe + K+ Vergg.
The log of the pricing kernel is defined as follows:
—Miy1 = o+ I'Xt + XtTAXt + §t€t+1 + KNt+1,

hence the short-term interest rate /iy is given by:

: 1 1
It = —Eth_l - EVth_l =9 + rXt + XtTAXt — §(§T§ + I€2).
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Theoretical formulation

. Numerical filtering
A Quadratic Term Structure Model umerical Tiltering

A Quadratic Term Structure Model — Recursion

The price of a k-period bond p¥ is guessed in the form of:
—pk = A+ B! + X C.Xt,
with Ay =6 — 3(sTc+ k%), By=T, GG = A.
Under log-normality:
1
pf =E, (mt—l-l + Pﬁf) + EVt (”"t+1 + Pfill) 5

if = —ktlog pf.

Jan Britha QUADRATIC YIELD MODEL



Theoretical formulation

. Numerical filtering
A Quadratic Term Structure Model umerical Tiltering

A Quadratic Term Structure Model — Recursion (cont.)

The undetermined coefficient technique yields the following
recursion:

A= (5 + Ay +2tr [ck_leD .
. .+% [%2 tcTe+ B WWT By +2tr [chk_lwack_le ,
B[ =— (r+B,0)+2(s+BL W) vl 0,
Ci=— (A + ¢Tck_1d>) 4207 G Wl 0.

Note that if C; = A is symmetric, so are Cg.
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Theoretical formulation

. Numerical filtering
A Quadratic Term Structure Model umerical Tiltering

A Formulation of the Empirical Model

Xt = q)Xt_l + W€t,

. -G

ko= SR ZR X XT KX+ v
We observe if and perhaps some elements of X;.

A non-linear state space system has been obtained, we need to
evaluate the likelihood (estimation), to filter the state
(forecasting), and so on ....
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Theoretical formulation

A Quadratic Term Structure Model Numerical filtering

Non-linear state space models

There are various choices of filtering non-linear state space models:
Extended Kalman filter: based on local linearization of the state
and observation equations;

Gaussian sum filter: global filter; the probability distributions being

approximated by a convex combination of gaussian
pdfs;

Partcile filter: global filter; the distribution of states approximated
using MC techniques;

Unscented filter: local filter based on unscented transformation.
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Theoretical formulation

A Quadratic Term Structure Model Numerical filtering

The first-order approximation

Consider X ~ N(j,02) random variable and Y = X2.

The first-order approximation (EKF) of Y works as follows:

> oY
Y= p? o S x=n(X = ) = p? 4 2u(X = p),

hence B
EY!= 2 <EY =2 + 0?2

vyl = 412 £VY = 20% + 1202

The first order approximation is biased

and the EKF may yield a biased estimation of the states.
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Theoretical formulation

A Quadratic Term Structure Model Numerical filtering

The unscented filter

The unscented filter tries to approximate the mean and the
variance of the non-linear transform more precisely than the first
-order approximation.
Three possible ways:

@ unscented transform — a kind of quadrature;

@ Monte Carlo integration;

© sometimes — exact integration possible.

Otherwise, the standard Kalman filter formulae apply. = thus
this is an approximate filter, but hopefully more precise than the
EKF.
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Theoretical formulation

A Quadratic Term Structure Model Numerical filtering

The unscented transformation

How does the unscented transformation work? J

@ Define a set of points: {x(F)|x(F) = x + Ax'};
@ Compute y&) = f(x (ii))'
@ Sety =3, wiy™); P =3 wily™) — 7)) — )T

The unscented transformation Ax’ =, /5 (Px)l/2 nd

1—wp

Wi = 5 -

For large-dimensional problems, x’ could be randomly drawn from
N(0, P¥), and w; = n7L.
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Theoretical formulation

A Quadratic Term Structure Model Numerical filtering

Algorithms' competition

| did a Monte Carlo study, which suggests that:

@ the unscented filter can compete with the particle filter in
precision,

@ but is faster;

o the EKF and the Gaussian sum filter are slow and inaccurate.

It is feasible to estimate and filter the quadratic yield model in a
reasonable time using the unscented filtering.
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