
GPU accelerated computation of credit
risk economic capital

Michal Beres, Technical University of Ostrava

Marek Hlavacek, Risk Analyst, Bank for International Settlements

Modern Tools for Financial Analysis and Modeling, Bratislava, June 2015

2

Presented results are outcome of a study performed in a
collaboration with the Faculty of Electrical Engineering and
Computer Science of the VSB - Technical University of Ostrava,
and the National Supercomputing Center IT4Innovations.

The views expressed in this presentation are those of their authors and not necessarily the
views of the BIS, the Technical University of Ostrava, or IT4Innovations.

3

Outline

 Motivation (it is not only “need for speed”)

 GPU accelerated computing

 Credit risk economic capital model

 GPU accelerated prototype

 Performance and accuracy gains

 How to start

4

Motivation – background

 The BIS is using a statistical model for the calculation of credit
risk economic capital (CREC).

 In line with the high credibility of the BIS, CREC is defined as
VaR at 99.995% confidence level of a hypothetical loss
distribution.

 Given the nature of the BIS portfolio and the high confidence
level, it is not possible to use an approximation in a form of a
close-form formulae.

 CREC is thus calculated as the corresponding quantile of a
simulated loss distribution (Monte Carlo).

 A large number of trials has to be evaluated to ensure
acceptable convergence for such a high quantile (10 millions).

5

Motivation – little bit more background

 For the whole portfolio, one simulation with 10mn trials

executed on a 16-core server runs for more than 3 hours.

 This is not a limiting factor for the daily calculation of CREC.
But it is a significant complication for any a bit more complex
what-if or sensitivity analysis which requires evaluation of
CREC using different parameterizations or portfolios.

 Even a simple what-if analysis (which does not require an
execution of the simulation for the whole portfolio) takes
several minutes.

 Marginal risk measures estimated from a simulation with 10mn
trials appear to be rather unstable.

6

Motivation – adding a business value

 Performance

 “Instant” response for a simple what-if analysis (exposure
adjustment, rating change)

 Very fast response for more complex scenarios

 Possibility to evaluate multiple complex scenarios in
reasonable time frame (a prerequisite for detailed sensitivity
analysis)

 Accuracy

 Significantly higher accuracy for the daily calculation of the
CREC utilization (potential reduction of an economic capital
buffer for model risk)

7

Outline

 Motivation (it is not only “need for speed”)

 GPU accelerated computing

 Credit risk economic capital model

 GPU accelerated prototype

 Performance and accuracy gains

 How to start

8

GPU accelerated computing – What is it?

“GPU-accelerated computing is the use of a graphics processing
unit (GPU) together with a CPU to accelerate scientific, analytics,
engineering, consumer, and enterprise applications. “

Source: Nvidia, http://www.nvidia.com/object/what-is-gpu-computing.html

9

GPU accelerated computing – the beginning

 Originally, graphic cards were designed to perform large
number of very specific operations in parallel (vector rotations,
transitions, …) on data with a predefined structure (vectors,
textures…).

 Due to constantly increasing demand for a high-resolution and
fast computer graphics, the computation power of GPUs
evolved rapidly.

 Soon (late 1990s), pioneers of the general-purpose

computing on graphics processing units discovered that it
worth to convert their data into vectors and textures to speed
up their optimizers, solvers etc.

10

GPU accelerated computing – modern age

 Modern graphics processing units (GPUs) come with flexible
and very generic interface allowing to easily access the
computation power they offer:

 OpenCL (Generic)

 CUDA (Nvidia)

 Benefits for developers and analysts:

 GPU accelerated mathematical and statistical libraries for
various programming languages (C/C++, Fortran, C#, …).

 GPU accelerated functions available in computing
environments (e.g. Matlab)

 Benefits for end users:

 Commercial software with build-in GPU acceleration (not
only computer games and 3D video streaming)

11

Outline

 Motivation (it is not only “need for speed”)

 GPU accelerated computing

 Credit risk economic capital model

 GPU accelerated prototype

 Performance and accuracy gains

 How to start

12

Credit risk economic capital model in a nutshell

1) Draw random shocks:

 Multivariate standard normal distribution

 Beta distribution (Gaussian copula)

2) Calculate loss at exposure level:

 Loss due to default:

L = [exposure at default] * [random LGD]

 Loss due to rating migration:

L = [value(original rating) – value(new rating)]

3) Aggregate losses at sub-portfolio level:

 Can be implemented as a matrix multiplication

4) Maintain tails of loss distributions:

 Sorting of tails corresponding to individual sub-portfolios

13

Outline

 Motivation (it is not only “need for speed”)

 GPU accelerated computing

 Credit risk economic capital model

 GPU accelerated prototype

 Performance and accuracy gains

 How to start

14

GPU accelerated prototype – “architecture”

 The GPU accelerated implementation is developed in Matlab
and CUDA:

 Matlab code executed on CPU:

• data manipulation
• data preprocessing

• calculation of z-scores etc.

 Matlab code executed on GPU:

• aggregation of loss data (matrix multiplication),
• sorting of tails

 CUDA kernel:

- sampling of random shocks

- calculation of losses

 A benchmark implementation was developed in Matlab – runs
in parallel on multiple CPU (parfor)

15

GPU accelerated prototype – few highlights

 Parallelization using “one trial per thread” strategy works for
most Monte Carlo simulations given that:

 execution time for individual trials does not significantly
differ

 data required to process a trial fit into the memory

 It is the large number of cores which gives the computation
power - latency needs to be managed:

 In a single kernel run, execute more threads than physical
cores (performance increased by 50% when number of
threads was doubled)

 Smooth thread execution times by processing several trials
in a single thread (performance increased by 30% when 10
trials were processed by a single thread)

16

GPU accelerated prototype – few highlights

 Avoid conditional execution (if, while etc.): It can be even faster to
evaluate an expression instead of checking whether it is needed

 Choose memory carefully (Tesla K20):

 global (shared, large but slow)

 constant (shared, very fast but extremely small)

 local (dedicated to a thread, small, can be faster than global
memory, fast for data stored in registers)

 Do not use doubles blindly: In time constrained calculation floats
may deliver better result than doubles (6.0757289045309463 +/- 5)

 Organize your data: data from memory is loaded to thread’s
registers by strides. For this reason, all vectors and matrices should
be organized in such a way that threads read consecutive elements

17

Outline

 Motivation (it is not only “need for speed”)

 GPU accelerated computing

 Credit risk economic capital model

 GPU accelerated prototype

 Performance and accuracy gains

 How to start

18

Performance and Accuracy gains - performance

Estimator Platform

Computation time

(10mn trials)

Computation time

(500mn trials)

Third party

application
Java 3 hours, 20 minutes 1 week

Optimized CPU

version
Matlab 1 hour 2 days

GPU accelerated

version

CUDA +
Matlab

4 minutes 3 hours, 30 minutes

19

Performance and Accuracy gains - accuracy

1 1.5 2 2.5
0.9999

0.99991

0.99992

0.99993

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1
Empirical CDF for 107 trials

P
ro

b
a
b
ili

ty

Tail of emp. CDF

Confidence level

VaR confidence interval 99,9%
ES

ES confidence interval 95%

Performance and Accuracy gains - accuracy

1 1.5 2 2.5
0.9999

0.99991

0.99992

0.99993

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1
Empirical CDF for 108 trials

P
ro

b
a
b

ili
ty

Tail of emp. CDF

Confidence level

VaR confidence interval 99,9%
ES

ES confidence interval 95%

21

Outline

 Motivation (it is not only “need for speed”)

 GPU accelerated computing

 Credit risk economic capital model

 GPU accelerated prototype

 Performance and accuracy gains

 How to start

22

How to start – prerequisites

 Hardware:

 modest gaming card, or

 specialized computing accelerator
Do not use (or be careful) when using your primary GPU for computing

(timeout)!

 Software

 OpenCL

 CUDA

 Matlab + Parallel computing toolbox

 …

23

How to start – learn the basic concepts

 Matlab:

 http://ch.mathworks.com/discovery/matlab-gpu.html

 Nvidia CUDA zone (CUDA Toolkit):

 https://developer.nvidia.com/cuda-zone

 https://developer.nvidia.com/cuda-toolkit

 OpenCL:

 https://www.khronos.org/opencl

24

How to start – give it a try, it is not that complicated

f = @(x,y)exp(sin(x)+cos(y));

A=rand(10^7,1); B=rand(10^7,1);

Agpu = gpuArray(A); Bgpu = gpuArray(B);

%Elapsed time is 0.028218 seconds.

Cgpu = f(Agpu,Bgpu); %executed on GPU

C=gather(Cgpu);

%Elapsed time is 0.027505 seconds.

C = f(A,B); %executed on CPU

%Elapsed time is 0.069975 seconds.

C=arrayfun(f,Agpu,B); %executed on GPU

%Elapsed time is 0.019498 seconds.

C = arrayfun(f,A,B); %executed on CPU

%Elapsed time is 35.007042 seconds.

 Function and data:

 Transferring data to
GPU:

 Functions executable
on GPU:

 Generic elementwise
operations:

25

How to start – give it a try, it is not that complicated

__global__ void fce(float* A, float* B, float* out, int size)

{

int idx = blockDim.x * blockIdx.x + threadIdx.x;

if(idx<size){

out[idx]=expf(sinf(A[idx])+cosf(B[idx]));

}

}

CUDA_kernel=parallel.gpu.CUDAKernel('fce.ptx','fce.cu','fce');

CUDA_kernel.ThreadBlockSize=[192*2 1 1];

CUDA_kernel.GridSize= [6 1];

Agpu=gpuArray.rand(N,1,'single');

Bgpu=gpuArray.rand(N,1,'single');

Cgpu=gpuArray.zeros(N,1,'single');

[A,B,Cgpu] = feval(CUDA_kernel,A,B,out,N);

C=gather(Cgpu);

 CUDA
kernel:

 Call in

Matlab:

This is code was not tested and may not compile.

26

Thank you for your
attention!

michal.beres@vsb.cz, marek.hlavacek@bis.org

