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Presented results are outcome of a study performed in a 
collaboration with the Faculty of Electrical Engineering and 
Computer Science of the VSB - Technical University of Ostrava, 
and the National Supercomputing Center IT4Innovations.

The views expressed in this presentation are those of their authors and not necessarily the 
views of the BIS, the Technical University of Ostrava, or IT4Innovations.



3

Outline

 Motivation (it is not only “need for speed”)

 GPU accelerated computing

 Credit risk economic capital model

 GPU accelerated prototype

 Performance and accuracy gains

 How to start



4

Motivation – background

 The BIS is using a statistical model for the calculation of credit 
risk economic capital (CREC).

 In line with the high credibility of the BIS, CREC is defined as
VaR at 99.995% confidence level of a hypothetical loss 
distribution.

 Given the nature of the BIS portfolio and the high confidence 
level, it is not possible to use an approximation in a form of a
close-form formulae.

 CREC is thus calculated as the corresponding quantile of a 
simulated loss distribution (Monte Carlo). 

 A large number of trials has to be evaluated to ensure 
acceptable convergence for such a high quantile (10 millions).
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Motivation – little bit more background

 For the whole portfolio, one simulation with 10mn trials 

executed on a 16-core server runs for more than 3 hours.

 This is not a limiting factor for the daily calculation of CREC.
But it is a significant complication for any a bit more complex 
what-if or sensitivity analysis which requires evaluation of 
CREC using different parameterizations or portfolios.

 Even a simple what-if analysis (which does not require an 
execution of the simulation for the whole portfolio) takes 
several minutes.

 Marginal risk measures estimated from a simulation with 10mn 
trials appear to be rather unstable.



6

Motivation – adding a business value

 Performance

 “Instant” response for a simple what-if analysis (exposure 
adjustment, rating change)

 Very fast response for more complex scenarios 

 Possibility to evaluate multiple complex scenarios in 
reasonable time frame (a prerequisite for detailed sensitivity 
analysis)

 Accuracy

 Significantly higher accuracy for the daily calculation of the 
CREC utilization (potential reduction of an economic capital 
buffer for model risk)
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GPU accelerated computing – What is it?

“GPU-accelerated computing is the use of a graphics processing 
unit (GPU) together with a CPU to accelerate scientific, analytics, 
engineering, consumer, and enterprise applications. “

Source: Nvidia, http://www.nvidia.com/object/what-is-gpu-computing.html
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GPU accelerated computing – the beginning

 Originally, graphic cards were designed to perform large 
number of very specific operations in parallel (vector rotations, 
transitions, …) on data with a predefined structure (vectors, 
textures…).

 Due to constantly increasing demand for a high-resolution and 
fast computer graphics, the computation power of GPUs 
evolved rapidly.

 Soon (late 1990s), pioneers of the general-purpose 

computing on graphics processing units discovered that it 
worth to convert their data into vectors and textures to speed 
up their optimizers, solvers etc. 
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GPU accelerated computing – modern age

 Modern graphics processing units (GPUs) come with flexible 
and very generic interface allowing to easily access the 
computation power they offer:

 OpenCL (Generic)

 CUDA (Nvidia)

 Benefits for developers and analysts:

 GPU accelerated mathematical and statistical libraries for 
various programming languages (C/C++, Fortran, C#, …).

 GPU accelerated functions available in computing 
environments (e.g. Matlab)

 Benefits for end users:

 Commercial software with build-in GPU acceleration (not 
only computer games and 3D video streaming)
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Credit risk economic capital model in a nutshell

1) Draw random shocks:

 Multivariate standard normal distribution

 Beta distribution (Gaussian copula)

2) Calculate loss at exposure level: 

 Loss due to default: 

L = [exposure at default] * [random LGD]

 Loss due to rating migration: 

L = [value(original rating) – value(new rating)]

3) Aggregate losses at sub-portfolio level:

 Can be implemented as a matrix multiplication

4) Maintain tails of loss distributions:

 Sorting of tails corresponding to individual sub-portfolios
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GPU accelerated prototype – “architecture”

 The GPU accelerated implementation is developed in Matlab 
and CUDA:

 Matlab code executed on CPU:

• data manipulation
• data preprocessing

• calculation of z-scores etc.

 Matlab code executed on GPU:

• aggregation of loss data (matrix multiplication),
• sorting of tails

 CUDA kernel: 

- sampling of random shocks

- calculation of losses

 A benchmark implementation was developed in Matlab – runs 
in parallel on multiple CPU (parfor)
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GPU accelerated prototype – few highlights

 Parallelization using “one trial per thread” strategy works for 
most Monte Carlo simulations given that:

 execution time for individual trials does not significantly 
differ

 data required to process a trial fit into the memory

 It is the large number of cores which gives the computation 
power - latency needs to be managed:

 In a single kernel run, execute more threads than physical 
cores (performance increased by 50% when number of 
threads was doubled)

 Smooth thread execution times by processing several trials 
in a single thread (performance increased by 30%  when 10 
trials were processed by a single thread)
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GPU accelerated prototype – few highlights

 Avoid conditional execution (if, while etc.): It can be even faster to 
evaluate an expression instead of checking whether it is needed

 Choose memory carefully (Tesla K20):

 global (shared, large but slow)

 constant (shared, very fast but extremely small)

 local (dedicated to a thread, small, can be faster than global 
memory, fast for data stored in registers)

 Do not use doubles blindly: In time constrained calculation floats 
may deliver better result than doubles (6.0757289045309463  +/- 5) 

 Organize your data: data from memory is loaded to thread’s 
registers by strides. For this reason, all vectors and matrices should 
be organized in such a way that threads read consecutive elements
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Performance and Accuracy gains - performance

Estimator Platform

Computation time

(10mn trials)

Computation time

(500mn trials)

Third party 

application
Java 3 hours, 20 minutes 1 week

Optimized CPU 

version
Matlab 1 hour 2 days

GPU accelerated 

version

CUDA + 
Matlab

4 minutes 3 hours, 30 minutes
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Performance and Accuracy gains - accuracy
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How to start – prerequisites

 Hardware:

 modest gaming card, or 

 specialized computing accelerator
Do not use (or be careful) when using your primary GPU for computing 

(timeout)!

 Software 

 OpenCL

 CUDA

 Matlab + Parallel computing toolbox

 …
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How to start – learn the basic concepts

 Matlab:

 http://ch.mathworks.com/discovery/matlab-gpu.html

 Nvidia CUDA zone (CUDA Toolkit):

 https://developer.nvidia.com/cuda-zone

 https://developer.nvidia.com/cuda-toolkit

 OpenCL:

 https://www.khronos.org/opencl
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How to start – give it a try, it is not that complicated

f = @(x,y)exp(sin(x)+cos(y));

A=rand(10^7,1); B=rand(10^7,1);

Agpu = gpuArray(A); Bgpu = gpuArray(B);

%Elapsed time is 0.028218 seconds.

Cgpu = f(Agpu,Bgpu); %executed on GPU

C=gather(Cgpu);

%Elapsed time is 0.027505 seconds.

C = f(A,B); %executed on CPU

%Elapsed time is 0.069975 seconds.

C=arrayfun(f,Agpu,B); %executed on GPU

%Elapsed time is 0.019498 seconds.

C = arrayfun(f,A,B); %executed on CPU

%Elapsed time is 35.007042 seconds.

 Function and data:

 Transferring data to 
GPU:

 Functions executable 
on GPU:

 Generic elementwise 
operations:
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How to start – give it a try, it is not that complicated

__global__ void fce( float* A, float* B, float* out, int size) 

{

int idx = blockDim.x * blockIdx.x + threadIdx.x;

if(idx<size){

out[idx]=expf(sinf(A[idx])+cosf(B[idx]));

}

}

CUDA_kernel=parallel.gpu.CUDAKernel('fce.ptx','fce.cu','fce');

CUDA_kernel.ThreadBlockSize=[192*2 1 1];

CUDA_kernel.GridSize= [6 1];

Agpu=gpuArray.rand(N,1,'single');

Bgpu=gpuArray.rand(N,1,'single');

Cgpu=gpuArray.zeros(N,1,'single');

[A,B,Cgpu] = feval( CUDA_kernel,A,B,out,N);

C=gather(Cgpu);

 CUDA 
kernel:

 Call in 

Matlab:

This is code was not tested and may not compile. 
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Thank you for your 
attention!

michal.beres@vsb.cz, marek.hlavacek@bis.org


