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Fundamental vs. Technical analysis

* fundamental analysis: based on financial statements, market
predictions, economic analysis ...

* technical analysis: based purely on the data and three assumptions
- the market discounts everything
- price moves in trends
- history tends to repeat
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Market Data
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Technical Indicators

® Trend Indicators: catch the main movement of the market
- pair of long and short EMA
- shortEMA>longEMA => market in up-trend => go long
- shortEMA<longEMA => market in down-trend => go short
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Technical Indicators

* Momentum Indicators: evaluate the power of the trend
- Relative Strength Index (RSI) — values from 0 to 100
- RSI > 70 — market is overbought and may soon go down
- RSI < 30 — market is oversold and may soon retrace up
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Technical Indicators

= \/olatility Indicators: give information about the size of price movements
- Average True Range (ATR)
- gives the information about the average price movement during one bar
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Trading system

* set of rules we provide to the algorithm in order to determine
- when to enter the position, which type of position
- how many contracts do we want to buy
- when to stop the position if the market goes against us (Stop Loss)
- when to exit winning position because we get our aim (Take Profit)
- when to exit position because the trend is reversing

* depends on the set of parameters
- number of periods in MA
- parameters in other Indicators
- value of Stop Loss, Take Profit
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Historical Backtest

* evaluates the quality of trading system on past data

* simulates as if we were trading throughout the historical period
» with the chosen trading strategy and its parameters

* inputs — data, parameters of the trading system

* outputs — trades executed on historical data, equity curve (EC)
* not completely ‘real’ simulation of live trading - slippage
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Forward-looking analysis

* In sample (IS):

- we run historical backtest on these data in order to find ‘good’” parameters

- trades are not realistic, as we already know the data a priori

* Out of sample (O0S):

- we work with this data as if we don’t know them
- we simulate trading in these data with the parameters that performed well in IS

* Forward-looking: we get the trades from unseen data by shifting IS after some time
and collecting all trades executed in all OoS contracts, ration between IS and 0o0S
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Calibration of the model

* process of finding the parameters which maximize the score of objective function,
which evaluate the quality of trades executed in IS

* objective function takes into account:
- Profit & Loss
- Maximum DD
- slope of EC (consistently good trades vs. few good trades and a lot of bad ones)
- number of trades: more trades = more slippage
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Genetic Algorithm

* problem: possibly huge number of parameters to optimize, cannot evaluate score in each
point of parameter space

* solution: using Genetic algorithm, corporate evolution principles to find the extreme of
the objective function

* iterative process, starts with random population

* crossover: two members of (i-1)-th generation produce their random crossover

* mutation: member suffers random mutation

* probability to be chosen to crossover/mutation is based on the score of each member

* can be speed-up using parallel or GPU computing
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Problems

* Forward-looking EC grows for some time and then it stops growing anymore

* What happened in 2009?

* Did the market change the structure?

* Is there some correlation between the score of objective function in IS and the
ECin O0S?

* Did we over fit the strategy?
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Predicting power of IS data
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Correlation between IS and OoS

» we chose the sample of parameters and computed the correlation between score
in IS and the PL in OoS

* low/none correlation means that

* good correlation means that the calibration is done properly and the trading
strategy is robust

ISscore-PL vs. OoS PL - 2008C-2008C
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Correlation between IS and OoS

* results for FGBL, Daily TF, 4 contracts IS, 1 contract OoS
* MA based signal generator producing number between 0 and 100, optimizing

level necessary to enter/close the trade, symmetric case for long/short trades =>

we optimize 2 parameters
* average correlation between IS and OoS - 0.16
* independently on the type of objective function used
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Good/Random/Bad strategies

* FGBL daily TF
* 6 contracts IS
e 2 contracts OoS

* If the market is trending,
trend-following trading
strategy with virtually any
parameters performs
reasonably well

* Choosing the best
parameters provides a
small edge in comparison
with random parameters
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Good/Random/Bad strategies
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Correlation between IS and OoS

* results for GBPAUD, 2hour TF, 6 contracts IS, 2 contract OoS

* average correlation between IS and OoS —0.00

* we optimize enter/close level of long and short trades independently => we
optimize 4 parameters

* independently on the type of objective function used

ISscore-PL vs. O0S PL - 2009D-2010A ISscore-PL vs. O0S PL - 2009C-2009D ISscore-PL vs. OoS PL - 2009B-2009C
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Over-Fitting
* Optimal complexity — number of parameters which describe the data in a
robust way

* Less parameters (underfitting) — fail to describe the data properly
* More parameters (overfitting) — fit the noise of the data, good performance
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Over-Fitting

* GBPUSD, daily TF, 4 contracts IS, 1 contract OoS, period 2003D-2010D
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