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Stochastic volatility jump diffusion
SVJD Model

We consider a general SVJD model which covers several kinds of stochastic volatility
processes and also different types of jumps

dSt = (r − λβ)Stdt +
√
vtStdW

S
t + St−dQt ,

dvt = p(vt)dt + q(vt)dW
v
t ,

dW S
t dW

v
t = ρ dt,

where p, q ∈ C∞(0,∞) are general coefficient functions, r is the interest rate, ρ is the
correlation of Wiener processes W S

t and W v
t , parameters λ and β correspond to a

specific jump process Qt , see below.

F. Baustian, M. Mrázek, J. Posṕı̌sil and T. Sobotka, Unifying approach to several stochastic
volatility models with jumps, manuscript under review, 2015.
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General model
Possible models

dSt = (r − λβ)Stdt +
√
vtStdW

S
t + St−dQt ,

dvt = p(vt)dt + q(vt)dW
v
t .

model p(v) q(v)

Heston/Bates κ(θ − v) σ
√
v

3/2 model∗ ωv − θ̃v2 ξv
3
2

Geometric BM αv ξv

Fractional SVJD∗∗ (H − 1/2)ψtσ
√
v + κ(θ − v) εH−1/2σ

√
v

∗θ̃ = − 1
2
ξ2 + (1 − γ)ρξ +

√
(θ + 1

2
ξ2)2 − γ(1 − γ)ξ2,

∗∗ψt =
∫ t

0
(t − s + ε)H−3/2dWψ

s .
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General model
Jumps

I The jump process Qt is a compound Poisson process Qt =
Nt∑
i=1

Yi .

I Y1,Y2, . . . are pairwise independent random variables with identically distributed jump
sizes β = E[Yi ] for all i ∈ N,

I Nt is a standard Poisson process with intensity λ independent of the Yi .

Jumps examples:

I log-normal, ln(1 + Yi ) ∼ N (µJ , σ
2
J), β = exp

{
µJ + 1

2σ
2
J

}
− 1.

D.S. Bates, Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options,
Review of Financial Studies 9(1), 1996.

I log-uniform, ln(1 + Yi ) ∼ U(a, b), β = eb−ea
b−a − 1.

G. Yan and F.B. Hanson, Option Pricing for a Stochastic-Volatility Jump-Diffusion Model with
Log-Uniform Jump-Amplitude, Proceedings of American Control Conference, 2006.
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General model
Option pricing - a PIDE approach

The problem of pricing an option in a model with jumps corresponds to a partial
integro-differential equation (PIDE). After substituting x = lnS we get the PIDE for
f (x , v , t) = V (ex , v , t)

−ft = −rf + (r − λβ − 1

2
v)fx +

1

2
vfxx + pfv +

1

2
q2fvv + ρq

√
vfxv

+ λ

∫ ∞
−∞

[f (x + y , v , t)− f (x , v , t)]ϕ(y)dy .

F.B. Hanson, Applied stochastic processes and control for jump-diffusion, Advances in Science and
Control, 2007.

We can either solve the PIDE numerically or for simple contracts analytically - we can
apply the complex Fourier transform similarly to what Lewis did for models without
jumps

A.L. Lewis, Option valuation under stochastic volatility, with Mathematica code, Finance Press, 2000.

7.6.2016 Jan Posṕı̌sil: Lessons Learned from SV Models 6 / 36



General model
Fourier transform

We want to apply the complex Fourier transform (Lewis, 2000)

F [f ] = f̂ (k , v , t) =

∫ ∞
−∞

e ikx f (x , v , t)dx

with the inverse transform

f (x , v , t) =
1

2π

∫ ∞+iki

−∞+iki

e−ikx f̂ (k, v , t)dk

where ki is some real number such that the line (−∞+ iki ,∞+ iki ) is in some strip of
regularity.

−f̂t = [−r − ik(r − λβ)] f̂ − 1

2
v(k2 − ik)f̂ + (p − ikρq

√
v)f̂v +

1

2
q2f̂vv

+ λF
[∫ ∞
−∞

[f (x + y , v , t)− f (x , v , t)]ϕ(y)dy

]
.
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General model
Solving the PIDE

We have to derive the Fourier transform of the integral term

F
[∫ ∞
−∞

[f (x + y , v , t)− f (x , v , t)]ϕ(y)dy

]
= f̂ (k, v , t)(ϕ̂(−k)− 1).

We substitute τ = T − t and define ĥ(k , v , t) by

ĥ(k , v , t) = exp (− [−r − ik(r − λβ) + λ(ϕ̂(−k)− 1)] τ) f̂ (k , v , τ)

and obtain the following equation

ĥτ =
1

2
q2(v)ĥvv +

[
p(v)− ikρ(v)q(v)

√
v
]
ĥv −

k2 − ik

2
v ĥ.

We denote with Ĥ the solution of the equation with initial value Ĥ(k , v , 0) = 1 which
is regular as a function of k = kr + iki within a strip k1 < ki < k2.
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General model
Solution - the unifying formula

Our unifying formula for the European call price V has the form

V (S , v , τ) = S − Ke−rτ
1

2π

∫ ∞+iki

−∞+iki

e−ikX̃ eλ(ϕ̂(−k)−1)τ Ĥ(k, v , τ)

k2 − ik
dk,

where X̃ = ln(S/K ) + (r − λβ)τ and max(k1, 0) < ki < min(1, k2).

Financial claim Payoff transform ŵ(k) k-plane restrictions

Call option − K ik+1

k2−ik Im k > 1

Put option − K ik+1

k2−ik Im k < 0

Bull Spread option
K ik+1

2 −K ik+1
1

k2−ik Im k > 0

Bear Spread option
K ik+1

1 −K ik+1
2

k2−ik Im k < 0

Butterfly Spread
2K ik+1

2 −K ik+1
1 −K ik+1

3
k2−ik none
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Fractional SVJD model
A new jump diffusion model

Let Bεt =
t∫

0

(t − s + ε)H−
1
2 dWs be the approximative fractional Brownian motion,

ε > 0, H > 0.5 (for H = 0.5 it is the standard Brownian motion).

Then the volatility process in the approximative fractional SVJD model

dvt = κ(θ − vt)dt + σ
√
vtdB

ε
t ,

can be rewritten as

dvt =

[
(H − 1

2
)ψtσ

√
vt + κ(θ − vt)

]
dt + εH−

1
2σ
√
vtdW

v
t ,

where ψt =
∫ t

0 (t − s + ε)H−
3
2 dW ψ

s .

J. Posṕı̌sil and T. Sobotka, Market calibration under a long memory stochastic volatility model,
manuscript under review, 2015.
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Fractional SVJD model
New formula

We get the solution with

V (S , v , τ) = S − Ke−rτ
1

2π

∫ ∞+i/2

−∞+i/2
e−ikX

Ĥf (k, v , τ)

k2 − ik
φ(−k)dk,

with Ĥf (k , v , τ) = exp(Cf (k, τ) + Df (k , τ)v) and

Cf (k , τ) = κθY τ − 2κθ

B2
ln

(
1− gedτ

1− g

)
,

Df (k , τ) = Y
1− edτ

1− gedτ
,

Y = −k2 − ik

b − d
, g =

b + d

b − d
, d =

√
b2 + B2(k2 − ik),

b = κ+ ikρB,

B = εH−
1
2σ.
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Lesson 1: Efficiency of pricing formulas

Computational efficiency of our solution for studied models:

I we compare computational time with respect to the original and newly proposed
formulas,

I three pricing tasks - 100 European call options with different times to maturity
and strike prices:

1. 100 parameter sets - market calibration with good initial guess,
2. 1000 parameter sets - average calibration using local search method,
3. 10000 parameter sets - calibration with global optimization procedure.

I parameter sets are randomly generated in given parameter bounds.

Computation were made on a reference PC (2x Intel Xeon E5-2630 CPU and 12 GB RAM).
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Lesson 1: Efficiency of pricing formulas
Example: Bates model

Pricing approach Task Time [sec] Speed-up factor

Original
#1 38.01 -
#2 407.16 -
#3 3396.74 -

Newly proposed
#1 9.37 4.06×
#2 80.98 5.03×
#3 926.10 3.67×

D.S. Bates, Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options,
Review of Financial Studies 9(1), 1996.

F. Baustian, M. Mrázek, J. Posṕı̌sil and T. Sobotka, Unifying approach to several stochastic
volatility models with jumps, manuscript under review, 2015.
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Lesson 1: Efficiency of pricing formulas
Bates model
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Figure: Parameters: v0 = 0.025, κ = 0.98, θ = 0.07, σ = 0.54, ρ = −0.65, λ = 0.5,
µJ = −0.05, σJ = 0.1 for S0 = 100, τ = 0.5, r = 0.03.
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Lesson 1: Efficiency of pricing formulas
Comparison of the selected SVJD models
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Figure: Option price as a function of the strike price for a call option with maturity 0.5 years
and S0 = 100, r = 0.03, H = 0.7.
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Lesson 2: Pitfalls of numerical integration

For some model parameters, we can observe (especially for adaptive quadrature
algorithms):

I an enormous increase in function evaluations,

I serious precision problems as well as

I a significant increase in computational time.

Problems are caused by inaccurately evaluated integrands:

I all models (including Heston) affected,

I especially sensitive to the value of volatility of volatility σ,

I standard double vs. variable precision arithmetic (vpa).

J. Daněk and J. Posṕı̌sil, Numerical integration of inaccurately evaluated functions. In Technical
Computing Prague 2015. Prague: Czech Technical University, 2015. p. 1-11.

J. Daněk and J. Posṕı̌sil, Numerical aspects of integration in semi-closed option pricing formulas under
jump-diffusion stochastic volatility models, manuscript in preparation.
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Lesson 2: Pitfalls of numerical integration
FSV Example: Global view to integrated function

Figure: Parameters: v0 = 0.1, κ = 2.1, θ = 0.4, σ = 0.002, ρ = −0.3, λ = 25, µJ = −4,
σJ = 1.7, H = 0.8, for S0 = 6721.8, K = 6250, τ = 0.120548, r = 0.009.
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Lesson 2: Pitfalls of numerical integration
FSV Example: Detailed zoom of integrated function

Figure: Same parameters as before. Inaccurately enumerated values in standard double
precision (red) and in vpa (blue) evaluated with 40 significant digits.
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Lesson 3: Calibration of SV models
Optimization problem

Optimization problem, nonlinear least squares:

inf
Θ

G (Θ), G (Θ) =
N∑
i=1

wi |CΘ
i (t,St ,Ti ,Ki )− C ∗i (Ti ,Ki )|2,

where

N denotes the number of observed option prices,

wi is a weight,

C ∗i (Ti ,Ki ) is the market price of the call option observed at time t,

CΘ denotes the model price computed using vector of model parameters.

Heston model: Θ = (v0, κ, θ, σ, ρ),
Bates model: Θ = (v0, κ, θ, σ, ρ, λ, µJ , σJ),
Yan-Hanson model: Θ = (v0, κ, θ, σ, ρ, λ, a, b),
FSV model: Θ = (v0, κ, θ, σ, ρ, λ, µJ , σJ ,H).
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Lesson 3: Calibration of SV models
Considered algorithms and their implementations

I global optimizers:
in MATLAB’s Global Optimization Toolbox:

I genetic algorithm (GA) - function ga()
I simulated annealing (SA) - function simulannealbnd()

from inberg.com:

I adaptive simulated annealing (ASA)

I local search method (LSQ):
in MATLAB’s Optimization Toolbox: function lsqnonlin(),

I Gauss-Newton trust region,
I Levenberg-Marquardt,

in Microsoft Excel’s solver
I Generalized Reduced Gradient method,

I combination of both approaches, see later.
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Lesson 3: Calibration of SV models
Measured errors, considered weights

Maximum and average of absolute relative error

MARE(Θ) = max
i=1,...,N

|CΘ
i − C ∗i |
C ∗i

, AARE(Θ) =
1

N

N∑
i=1

|CΘ
i − C ∗i |
C ∗i

Let δi > 0 denote the bid ask spread.
We consider the following weights

wA
i =

|δi |−1

N∑
j=1
|δj |−1

, wB
i =

δ−2
i

N∑
j=1

δ−2
j

, wC
i =

δ
−1/2
i

N∑
j=1

δ
−1/2
j

,

wD
i =

Vega2
i

N∑
j=1

Vega2
i

, wE
i =

1

N
.
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Lesson 3: Calibration of SV models
Data source: Bloomberg Finance L.P.

Real market data

I option data really difficult to get for academic purposes,

I paid services such as Bloomberg Professional or Thomson Reuters Eikon rather
expensive,

I exotic options almost impossible to get even with Bloomberg - only as OTC
(private) contracts,

I a new cooperation with someone who can provide data welcomed.

We present an example:

I 97 ODAX calls traded on 18/03/2013 ranging from 86.5% to 112.0% moneyness
across 5 maturities from ca 13.5 weeks to 1.76 years;

I 107 ODAX calls traded on 19/03/2013 ranging from 88.5% to 112.2% moneyness
across 6 maturities from ca 13.4 weeks to 1.75 years.
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Lesson 3: Calibration of SV models
Data source: Bloomberg Finance L.P.
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Figure: Option price structure in the strike/maturity plane for ODAX call 18/03/2013 on the
left and for 19/03/2013 on the right resp. The center of each circle corresponds to the
strike/maturity parameters of the traded contract, circle diameter is proportionate to the
option premium.
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Lesson 3: Calibration of SV models
Data and figure source: Bloomberg Finance L.P.

Figure: Volatility smile and term structure for ODAX calls 19/03/2013.
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Lesson 3: Calibration of SV models
Calibration results - SA vs. SA+LSQ
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Figure: Calibration results for the FSV model using SA (left figure) and SA combined with LSQ.
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Lesson 3: Calibration of SV models
Calibration results - GA+LSQ
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Figure: Results of calibration for pair GA and LSQ for weights C - Heston model on the left
and FSV model on the right.

7.6.2016 Jan Posṕı̌sil: Lessons Learned from SV Models 26 / 36



Lesson 3: Calibration of SV models
Empirical results

I Optimization problem is non-convex and may contain many local minima,

I local search method without a good initial guess may fail to achieve satisfactory
results,

I we can set a fine deterministic grid for initial starting points (rather time
consuming, even in parallel environment), or we can use several iterations of a
global optimizer (e.g. suficiently large population in GA),

I Vega weights are least suitable.

M. Mrázek, J. Posṕı̌sil and T. Sobotka, On Optimization Techniques for Calibration of Stochastic
Volatility Models, In Applied Numerical Mathematics and Scientific Computation. Athens: Europment,
2014. pp. 34–40.

M. Mrázek, J. Posṕı̌sil and T. Sobotka, On calibration of stochastic and fractional stochastic
volatility models. European Journal of Operational Research, in press, 2016,
doi:10.1016/j.ejor.2016.04.033.
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Lesson 4: Robustness and sensitivity analysis

I New approach to robustness and sensitivity analysis for SV models is introduced,
I bootstrapping and Monte Carlo filtering techniques are applied,
I we address the impact of jumps and long memory in practice.

We present an example:
I European call options on AAPL. Four data sets from slightly different time

periods: 01/04/2015, 15/04/2015, 01/05/2015 and 15/05/2015.
I Behavioural set of parameters - for which AARE is in lower 3/8 quantile,

non-behavioural set - AARE in upper 3/8 quantile,

Table: Importance of λ for calibrations AAPL options on all four datasets - for all we were able
to reject the null hypothesis (both sets from the same distribution) at significance level 5%.

Data sets 01/04/2015 15/04/2015 01/05/2015 15/05/2015

p-value 1.30% 0.43% 8.45e-12% 3.56%

J. Posṕı̌sil, T. Sobotka and P. Ziegler, Robustness and sensitivity analyses for stochastic volatility
models under uncertain data structure, 2015, manuscript in revision.
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Scatterplot Matrix of Calibration Parameters in Bates Model
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Figure: 15/05/2015. Diagonal elements depict histograms of parameter values obtained by bootstrap
calibrations (e.g. the fist histogram corresponds to the values of v0). Off-diagonal elements illustrate a
dependence structure for each parameter pair. In those figures, a black cross represents the reference value of
the specific parameter (calibration to all data) and by a red star we depict the bootstrap estimate of the value.



Scatterplot Matrix of Calibration Parameters in FSV Model
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Lesson 5: Simulation of SV models

Simulation of the CIR volatility process

I Euler scheme, Milstein scheme, absorption or reflection technique for positivity,

I some schemes evidently wrong: Kahl-Jäckel (2006) scheme, Haastrecht and
Pelsser (2010),

I exact scheme by Broadie and Kaya (2006) - problems with huge values of
modiffied Bessel functions,

I QE scheme by Andersen (2008) - samples from approximated non-central
chi-square distribution, probably the most efficient method.

For models with jumps a simple modification of the QE scheme is available.
For variance reduction we use antithetic variates method.

M. Mrázek and J. Posṕı̌sil, Calibration and simulation of Heston model, 2015, manuscript in revision.
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Lesson 5: Simulation of SV models
Example: Heston model simulation
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Figure: Mean of 100 000 paths. Parameters: v0 = 0.02497, κ = 1.22136, θ = 0.06442,
σ = 0.55993, ρ = −0.66255, S0 = 7962.31, r = 0.00207, T = 1. Time step ∆ = 2−6.
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Lesson 5: Simulation of SV models
Example: Heston model simulation
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Figure: Convergence of schemes. 100 000 simulated paths, 100 batches. Parameters:
v0 = 0.02497, κ = 1.22136, θ = 0.06442, σ = 0.55993, ρ = −0.66255, S0 = 7962.31,
r = 0.00207, T = 1. Time step ∆ = 2−4, . . . , 2−11.
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Conclusion and further issues

FSV model:

I a new semi-closed formula,

I first empirical calibration results,

I in some aspects better results than with Heston model.

Further issues:

I performance and accuracy improvements of Gauss-Newton trust-region methods,

I variable metric methods for nonlinear least squares,

I fine tuning the global optimizers.

I efficient pricing of exotic derivatives,

I hedging under the FSV model,

I large-scale parallel calibration of the models.
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Conclusion and further issues

I We are analyzing the PIDE that determines the Fundamental solution. What
assumptions do we have to make on p and q to get:

I existence and uniqueness of the solution or even an explicit solution,
I certain degree of regulartity for the solution, especially with respect to k on the line

k = kr + iki with kr ∈ R and fixed ki ∈ R.

I We are studying the numerical integration techniques of the pricing formulas.
There are many nontrivial open issues involving both the accuracy and the speed
of calculation, some of them can be solved using the vpa only.

I For non-European type of contracts we are studying a numerical solution of the
corresponding PIDE using finite difference methods and finite element methods.

I We are studying models with rough volatility, i.e. with driving process being not
only approximative fractional, but for example standard fractional Brownian
motion.
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Thank you for your attention!
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