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Stochastic volatility jump diffusion
SVJD Model

We consider a general SVJD model which covers several kinds of stochastic volatility
processes and also different types of jumps

dS: = (r — AB)Sedt + /viS:dW? + S._dQ;,
dve = p(ve)dt + q(ve)dWy,
dWdWy = pdt,
where p, g € C*°(0,00) are general coefficient functions, r is the interest rate, p is the

correlation of Wiener processes W.> and W}’, parameters A and 3 correspond to a
specific jump process Q;, see below.

B
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General model

Possible models

dSt — (r = )\ﬁ)st‘dt -+ \/Vtstde + St—th7
dve = p(ve)dt + q(ve)dW, .

model | p(v) | q(v)
Heston /Bates k(0 — v) o\/v
3/2 model* wv — Ov?2 5\/%
Geometric BM av Ev

Fractional SVID** | (H — 1/2)¢r0\/v + k(0 — v) | eH=126/v

Y6 =36+ (1-)pt + \/(9 + 3622 — (1 - )&,
b = [5(t —s+e)" T 2dWy.
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General model

Jumps
N
The jump process Q: is a compound Poisson process Q; = »_ V.
i=1
Y1, Yo,... are pairwise independent random variables with identically distributed jump

sizes B = E[Yj] for all i € N,

N; is a standard Poisson process with intensity A independent of the Y;.
Jumps examples:

log-normal, In(1 + Y;) ~ N (py,03), B =exp{ps+ 303} — 1.

B

log-uniform, In(1+ Y;) ~U(a, b), 5 = % -1

3
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General model
Option pricing - a PIDE approach

The problem of pricing an option in a model with jumps corresponds to a

. After substituting x = In S we get the PIDE for
f(x,v,t) = V(e v,t)
1
2

+ )\/_OO [f(x+y,v,t)—f(x,v,t)] p(y)dy.

1 1
_ft = —rf+(r—)\5_§V)f;<+§fox+va+ quvv“‘pq\/;fxv

B

We can either solve the PIDE numerically or for simple contracts analytically - we can
apply the complex Fourier transform similarly to what Lewis did for models without
jumps

[
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General model

Fourier transform

We want to apply the complex Fourier transform (Lewis, 2000)

Flf] = f(k,v,t) = / e™f(x, v, t)dx
with the inverse transform
oo+ik; R
f(x,v,t) = > / o e ™ f(k, v, t)dk

where k; is some real number such that the line (—oo + ik, oo + ik;) is in some strip of
regularity.

~ ~ 1 ~ ~ ]. A
—f = [—r—ik(r = AB)] f — Ev(k2 — ik)f + (p — ikpgv/V)f, + 5q2fw

+ A
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General model
Solving the PIDE

We have to derive the Fourier transform of the integral term

We substitute 7 = T — t and define h(k, v, t) by
h(k,v,t) = exp(—[—r — ik(r — AB) + M(@(—k) — 1)] 7) F(k, v, T)

and obtain the following equation

a ik A~
hr = 262 (V)hw + [p(v) — ikp(v)a(v)v/v] b, — =———=vh.

We denote with H the solution of the equation with initial value I:I(k, v,0) = 1 which
is regular as a function of k = k, + ik; within a strip k1 < k; < ko.

7.6.2016 Jan PospiZil: Lessons Learned from SV Models 8 /36



Our

General model

Solution - the unifying formula

formula for the European call price V has the form

V(S,v,T) =S5 —-Ke ""—

2T J_cortik;

A

oo+ik,- -
1 / o kX A(@(—k)—1)r H(k, Va.T) dk

k2 — ik ’

where X = In(S/K) + (r — AB)7 and max(ki,0) < k; < min(1, k2).

7.6.2016

Financial claim

Payoff transform w(k) k-plane restrictions

0 ik+1
Call option —,ﬁ—_t.k Imk >1
] ik+1
Put option —,ﬁ—_t.k Imk <0
] K2ik+17K1ik+1
Bull Spread option 2 — Imk >0
] Klik+1_K2ik+1
Bear Spread option Se— Imk <0
k1 peik+1  peik+1
Butterfly Spread 2K; kfl_,.k K none
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Fractional SVJD model

A new jump diffusion model

t

Let BS = [(t — s+ )" 2dW, be the
0
e >0, H> 0.5 (for H=0.5 it is the standard Brownian motion).

Then the volatility process in the
dvi = k(0 — v )dt + o\/vedB;,

can be rewritten as

1
dve = |(H = )00/ + (0 — v) | dt + ¥ 3o\ /mdWy,

where ¢y = [;(t — s+ e)H=2dwy .
B
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Fractional SVJD model

New formula

We get the solution with

1 oot He(k, v, T)
V — _ K —rT_— —IkX% —k k
(S =S ke [ e Dok,

with He(k,v,7) = exp(Cr(k, 7) + D¢(k,7)v) and

o dr
Crlk,m) = noyr — 21 (1ge) ,

B2 1-g
1_ed7'
D (k =Y —
f( 7T) 1_ged7.7

k% — ik b+d

Py -t \/b+ (k? — ik),
b=k+ ikpB,
B:é‘H*%U.
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Lesson 1: Efficiency of pricing formulas

Computational efficiency of our solution for studied models:
we compare computational time with respect to the original and newly proposed
formulas,

three pricing tasks - 100 European call options with different times to maturity
and strike prices:

100 parameter sets - market calibration with good initial guess,
1000 parameter sets - average calibration using local search method,
10000 parameter sets - calibration with global optimization procedure.

parameter sets are randomly generated in given parameter bounds.
Computation were made on a reference PC (2x Intel Xeon E5-2630 CPU and 12 GB RAM).
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7.6.2016

Lesson 1: Efficiency of pricing formulas

Pricing approach  Task Time [sec] Speed-up factor

#1 38.01 -
Original #2 407.16 -
#3 3396.74 -
#1 9.37 4.06 %
Newly proposed #2 80.98 5.03x
#3 926.10 3.67x

Jan PospiZil: Lessons Learned from SV Models
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Price

Lesson 1: Efficiency of pricing formulas

Bates model

Call prices of the Bates SVJD model Differences between pricing approaches

35 T T 108 T
= QOriginal formula
= = Newly proposed formula
30 ] 10°°
25+ 8 10'10 L
o
20k g 1011k
£
8
L SN
15 § 10
o
10F Q 413
5t 10714k
0 L L L L 10'15 L L L L L
70 80 90 100 110 120 130 70 80 90 100 110 120 130
Strikes Strikes

Parameters: vy = 0.025, K = 0.98, 8 = 0.07, 0 = 0.54, p = —0.65, A = 0.5,

py = —0.05, o, = 0.1 for S = 100, 7 = 0.5, r = 0.03.
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Lesson 1: Efficiency of pricing formulas
Comparison of the selected SVJD models

Call prices under the introduced SVJD models

35 T T T T 10 T T T
Bates SVJD —Bates SVJD
= = Yan Hanson SVJD 9r = = Yan Hanson SVJD| -
Fractional SVJD || Fractional SVJD
st 1
4 - 1

Price

0
130 100 105 110 115 120
Strikes

Strikes

Option price as a function of the strike price for a call option with maturity 0.5 years
and S =100, r =0.03, H=10.7.
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Lesson 2: Pitfalls of numerical integration

For some model parameters, we can observe (especially for adaptive quadrature
algorithms):

an enormous increase in function evaluations,
serious precision problems as well as
a significant increase in computational time.
Problems are caused by
all models (including Heston) affected,
especially sensitive to the value of volatility of volatility o,

standard double vs. variable precision arithmetic (vpa).

B
B
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Lesson 2: Pitfalls of numerical integration
FSV Example: Global view to integrated function

1.5,

0.5-

o}~

0 10 20 30 40 50 60 70

Parameters: vy =0.1, k =21, 0§ = 0.4, 0 = 0.002, p = —0.3, A =25, uy; = —4,

oy=17, H=0.8, for S = 6721.8, K = 6250, 7 = 0.120548, r = 0.009.
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7.6.2016

-8.7235680 E-4

-8.7235686 E-4

-8.7235692 E-4

Lesson 2: Pitfalls of numerical integration

FSV Example: Detailed zoom of integrated function

10 10.00000005 10.0000001

Same parameters as before. Inaccurately enumerated values in standard double
precision (red) and in vpa (blue) evaluated with 40 significant digits.
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Lesson 3: Calibration of SV models

Optimization problem

Optimization problem, nonlinear least squares:

N
inf G(©), G(O) = > wilCP(t, St Ti, Ki) — G (T3, Ki) P,
i=1
where

denotes the number of observed option prices,
is a weight,
is the market price of the call option observed at time t,
denotes the model price computed using vector of model parameters.

Heston model: © = (v, &, 0,0, p),

Bates model: © = (v, k,0,0,p,\, g, 0,),
Yan-Hanson model: © = (v, k,0,0,p,\, a,b),
FSV model: © = (v, k,0,0,p, \, iy, 04, H).
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7.6.2016

Lesson 3: Calibration of SV models

Considered algorithms and their implementations

global optimizers:
in MATLAB's Global Optimization Toolbox:

- function ga ()
- function simulannealbnd()

from inberg.com:

local search method (LSQ):
in MATLAB's Optimization Toolbox: function 1sqnonlin(),

1

in Microsoft Excel’s solver

combination of both approaches, see later.
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Lesson 3: Calibration of SV models

Measured errors, considered weights

MARE(©) = max

|Ce C*
— 1 AARE( E
i=1,...,N C* ’ (©) =

Let §; > 0 denote the
We consider the following weights

_ -2 —-1/2
a_ G s c_ &
WI - N bl WI - N 9 WI - N 1/27
_ -2 -
> 167 2 2.
Jj=1 Jj=1 Jj=1
Vega? 1
D i E
w;m = N77 w;m = N
> Vega?
Jj=1
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Lesson 3: Calibration of SV models

Data source: Bloomberg Finance L.P.

Real market data
option data really difficult to get for academic purposes,
paid services such as Bloomberg Professional or Thomson Reuters Eikon rather
expensive,
exotic options almost impossible to get even with Bloomberg - only as OTC
(private) contracts,

We present an example:
97 ODAX calls traded on 18/03/2013 ranging from 86.5% to 112.0% moneyness
across 5 maturities from ca 13.5 weeks to 1.76 years;
107 ODAX calls traded on 19/03/2013 ranging from 88.5% to 112.2% moneyness
across 6 maturities from ca 13.4 weeks to 1.75 years.
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Lesson 3: Calibration of SV models

Data source: Bloomberg Finance L.P.
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Option price structure in the strike/maturity plane for ODAX call 18/03/2013 on the
left and for 19/03/2013 on the right resp. The center of each circle corresponds to the
strike/maturity parameters of the traded contract, circle diameter is proportionate to the

ption premium.
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Lesson 3: Calibration of SV models

OF APPLIED SCIENCES

UNIVERSITY . .
OF WEST BOHEMIA Data and figure source: Bloomberg Finance L.P.
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Figure: Volatility smile and term structure for ODAX calls 19/03/2013.
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Lesson 3: Calibration of SV models

UNIVERSITY

Calibration results - SA vs. SA+LSQ

OF WEST BOHEMIA
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Calibration results for the FSV model using SA (left figure) and SA combined with LSQ.
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Lesson 3: Calibration of SV models

Calibration results - GA+LSQ

UNIVERSITY
OF WEST BOHEMIA
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Results of calibration for pair GA and LSQ for weights C - Heston model on the left

and FSV model on the right.
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Lesson 3: Calibration of SV models

Empirical results

Optimization problem is non-convex and may contain many local minima,

local search method without a good initial guess may fail to achieve satisfactory
results,

we can set a fine deterministic grid for initial starting points (rather time
consuming, even in parallel environment), or we can use several iterations of a
global optimizer (e.g. suficiently large population in GA),

Vega weights are least suitable.
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Lesson 4: Robustness and sensitivity analysis

New approach to robustness and sensitivity analysis for SV models is introduced,
bootstrapping and Monte Carlo filtering techniques are applied,
we address the impact of jumps and long memory in practice.

We present an example:
European call options on AAPL. Four data sets from slightly different time
periods: 01/04/2015, 15/04/2015, 01/05/2015 and 15/05/2015.
Behavioural set of parameters - for which AARE is in lower 3/8 quantile,
non-behavioural set - AARE in upper 3/8 quantile,

Importance of X for calibrations AAPL options on all four datasets - for all we were able
to reject the null hypothesis (both sets from the same distribution) at significance level 5%.

Data sets 01/04/2015 15/04/2015 01/05/2015 15/05/2015
p-value 1.30% 0.43% 8.45e-12%  3.56%

B
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Scatterplot Matrix of Calibration Parameters in Bates Model
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15/05/2015. Diagonal elements depict histograms of parameter values obtained by bootstrap
calibrations (e.g. the fist histogram corresponds to the values of vp). Off-diagonal elements illustrate a
dependence structure for each parameter pair. In those figures, a black cross represents the reference value of
the specific parameter (calibration to all data) and by a red star we depict the bootstrap estimate of the value.



Scatterplot Matrix of Calibration Parameters in FSV Model
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Lesson 5: Simulation of SV models

Simulation of the CIR volatility process
Euler scheme, Milstein scheme, absorption or reflection technique for positivity,

some schemes evidently wrong: Kahl-Jackel (2006) scheme, Haastrecht and
Pelsser (2010),

exact scheme by Broadie and Kaya (2006) - problems with huge values of
modiffied Bessel functions,

QE scheme by Andersen (2008) - samples from approximated non-central
chi-square distribution, probably the most efficient method.

For models with jumps a simple modification of the QE scheme is available.
For variance reduction we use method.

B
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Lesson 5: Simulation of SV models

Example: Heston model simulation
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Mean of 100 000 paths. Parameters: vy = 0.02497, k = 1.22136, 6§ = 0.06442,
o = 055993, p = —0.66255, Sy = 7962.31, r = 0.00207, T = 1. Time step A =276,
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Lesson 5: Simulation of SV models

Example: Heston model simulation
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Convergence of schemes. 100 000 simulated paths, 100 batches. Parameters:
vo = 0.02497, k = 1.22136, 6 = 0.06442, o0 = 0.55993, p = —0.66255, Sy = 7962.31,
r=0.00207, T=1. Timestep A =274 ...,271
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Conclusion and further issues

FSV model:
a new semi-closed formula,
first empirical calibration results,
in some aspects better results than with Heston model.

Further issues:
performance and accuracy improvements of Gauss-Newton trust-region methods,
variable metric methods for nonlinear least squares,
fine tuning the global optimizers.
efficient pricing of exotic derivatives,
hedging under the FSV model,

large-scale parallel calibration of the models.
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7.6.2016

Conclusion and further issues

We are analyzing the PIDE that determines the Fundamental solution. What
assumptions do we have to make on p and g to get:

existence and uniqueness of the solution or even an explicit solution,

certain degree of for the solution, especially with respect to k on the line

k = k, + ik; with k, € R and fixed k; € R.
We are studying the numerical integration techniques of the pricing formulas.
There are many nontrivial open issues involving both the accuracy and the speed
of calculation, some of them can be solved using the only.

For non-European type of contracts we are studying a numerical solution of the
corresponding PIDE using finite difference methods and

We are studying models with rough volatility, i.e. with driving process being not
only approximative fractional, but for example standard
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Thank you for your attention!
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