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MOTIVATION

* Sequential data analysis
supervised learning — like any other classifier, not interesting for us,

unsupervised learning — clustering of sequential data, capturing changes in time
series dynamics in probabilistic fashion,

* bootstrapping data while using estimated dynamics,

° regime change insights.
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REPRESENTATION

* K hidden, unobservable states z, with Markov transition matrix 4 € RXX, given by
a;j = P(z; = jlz,—, = i) and starting probability m; = P(z; = i),

* observations x; with conditional distribution p(x;|z; = k) = fi, (x:|Py) .

* Generally, model A is described with an unknown set of parameters 6 = {m, A, ®@}.
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LEARNING

* Model A({mr, A, ®@}) has to be fitted to the data x;.r.
* Unsupervised learning the model is achieved via maximizing the likelihood function,
Baum-Welch algorithm — local search, multiple initializations, monotonic,

Particle swarm optimization — global search, costly computation, probabilistic
constraints, implicit parameter regularization.

* Fit diagnostic with likelihood value and bootstrap for parameter correlation.
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PARTICLE SWARM OPTIMIZATION

°  Problem min f(x)
xX€r

° objective function f,
° constrained space I'.

* Initialize parameters w, Cy, C,, 1,
° . ., . i
initialize swarm {x t}ie_l’
° each swarm particle x*; is a solution,
° iteration at time t:
Ny1, Ny NU[O: 1],
particle’s best solution P*;,
swarm’s best solution PY,.

A
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INFERENCE

* Conditioned on the fitted model A(#, 4, @) and observations up to time T we can
smooth, filter and predict, i.e., evaluate the posterior distribution
p(z:|x1.7) — past states probability,

p(zr|x,.7) — current states probability,

p(zr41lx1.7) — future states probability.
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DRAWBACKS

* Large number of parameters and static estimates,

° training sequence selection - overfitting to irrelevant data,

* complicated model identification,

* complicated model selection/comparison — likelihood ratio test, R-squared,

* state duration distribution, P(z; = k, ..., Ztyr = Kk, Zerre1 F k) = (1 — agg)(apr)*E, may
decrease too fast.
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SIMULATED DATA EXAMPLE

* Simulated 500 points from a 2-state auto regressive HMM with known parameters

7 = [0.1,0.9]
4 095 0.05
0.02 0.98

Pr (x| Py ) = e + brxe—q1 + N(0, 0p%), k € {1,2},

®, ={-0.01,0.7,0.1}, &, = {0.1,—0.3,0.1}.
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SIMULATED DATA EXAMPLE CONT'D

log(cumprod(-min(x) + x))
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SIMULATED DATA EXAMPLE CONT'D

* Particle swarm trained 2-state HMM with AR(1) emissions well recovers the
parameters with the highest likelihood estimates

#=[le—5, 1],

_ 09567 0.0433
0.0211 0.9789

o Y

@, ={-0.0057,0.7595,0.0908}, ®, = {0.0896,—0.3941,0.1166}.

* Likelihood comparison
logL(8]x) = —188 vs. logL(8]x) = —180

*  MAP state classification
accuracy ~ 94%, with statel/state2 ratio 186/314.
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REAL DATA APPLICATION

* Synthetic time series, where stationarity and mean reversion is assumed and tested,
e.g., residuals of cointegrated instruments
belief, that the remaining variance is random unexplainable noise, but still might
contain a certain structure to exploit.
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Thank you for your attention.
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