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OVERVIEW
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• GPU computing

• Evolutionary Algorithms

• Application for Financial Models



GPU COMPUTING
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GPU COMPUTING IN MATLAB
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• Use Parallel Computing Toolbox (possibly also GPU Coder)

 No CUDA programming needed

 Lot of existing predefined functions

• Compile native code as mex file in order to be used in MATLAB

 More control over the code

 We understand what is happening inside

 Possible use in other programming languages

We choose this approach



GPU VS CPU - ARCHITECTURE
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• CPU: specialized for flow control and fast 
serial computation (optimized for latency)

• GPU: specialized for compute-intensive, 
highly parallel computation needed for 
graphic rendering (optimized for 
throughput)

• ALU: arithmetic logic unit

• Cache: fast temporary memory

• DRAM: main memory

• Control: flow control unit



GPU VS CPU - FLOPS
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• FLOP: floating-point 
operation per second, 
measure of raw 
computational power



GPU VS CPU – MEMORY BANDWIDTH
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• Memory Bandwidth: 
amount of data that can 
be theoretically 
processed per second 



CUDA
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• Stands for Compute Unified Device Architecture

• Introduced by NVIDIA in 2007

• Extension to the C language that allows to program GPU without need 
to learn complex programming concepts or to use graphic primitive 
types

• CUDA Toolkit: can be downloaded from NVIDIA webpage



PROGRAMMING MODEL
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• SIMT Architecture – single-instruction, 
multiple-thread

• We write program (kernel) for one 
thread -> it will be executed on many 
threads

• Block of Threads – max 1024

• Grid of Blocks



GPU HARDWARE - MEMORY
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• Per-thread local memory: very fast, very 
small

• Per-block shared memory: can be used 
within each thread-block, little bit slower 

• Global memory: can be used from 
anywhere on GPU, much slower

• Copying from CPU to GPU Global memory 
is very time-consuming and ineffective



STREAMING MULTIPROCESSORS
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• Manage the execution of Threads, memory access and the distribution 
of arithmetic operations on the CUDA Cores

• Each Thread Block runs on a single SM, each SM can manage multiple 
Thread Blocks, depending on the available memory

• There can be up to ~20 SMs on the graphic card, depending on the 
model



CUDA CORES
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• Unit for performing arithmetic operations

• Their architecture depends on the Compute Capability of the GPU

• Typical NVIDIA GPU has 100s – 1000s CUDA Cores 



SCALABILITY
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• Compatibility across 
multiple devices

• Same code can run from 
smartphones with 2 SMs to 
newest GPUs with 10s of 
SMs



GPU CARDS
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• Scientific GPUs: 

– Pros: better computing capability, optimized to calculate with double 
precision

– Cons: much more expensive, cannot be used for monitor

• Gaming GPUs: 

– Pros: cheaper, can be used also for monitor

– Cons: expensive double precision computing

• Example: GeForce GTX 1050 card (quite basic gaming card): CUDA 
Capability version 6.1, 5 SMs, 128 CUDA Cores each -> 640 CUDA 
cores



SINGLE VS. DOUBLE PRECISION
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• Gaming GPUs are optimized for single-precision calculations

• From the performance point of view is important to use double 
precision only where necessary

• Example: GeForce GTX 1050 card have 32-times smaller double 
precision computing capability, which means ~10 times slower 
performance



CUDA EXAMPLE – MATRIX MULTIPLICATION
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• AB = C (each matrix has shape N x N)

• Serial code: N^3 arithmetic operations (N multiplications for each of 
N^2 elements)

• Parallel code: N arithmetic operations done by each of N^2 threads

• Actual speedup will depend on the amount of possible parallel threads 
and the effectivity of memory access



CUDA CODE COMPILATION FOR MATLAB
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• C/C++/CUDA code can be compiled to be used in MATLAB as mex files 
(.mexw64)

• Mex, Nvmex, CUDA mex etc. did not work for us

• Exporting DLL from Visual Studio with the help of mex libraries did work 
for us 



EVOLUTIONARY ALGORITHMS
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OPTIMIZATION PROBLEM
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• General optimization problem have the following form:



OPTIMIZATION TYPES
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• Deterministic search methods:
 Gradient methods: e.g. Quasi-Newton methods (DFP, BFGS)

 Gradient-free methods: e.g. Direct methods, Surrogate methods

 Require some assumptions about the smoothness or continuity of the objective 
function

 Extremely dependant on the starting point in case of multimodal functions

• Stochastic search methods:

 Random search

 Evolutionary algorithms



EVOLUTIONARY ALGORITHMS
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• Motivated by the natural processes, lot of different types, such as:

 Genetic Algorithm (GA)

 Evolutionary Programming

 Evolution Strategies (ES)

 Genetic Programming

 Simulated Annealing

 Particle Swarm Optimization (PSO)

 Ant Colony Optimization



EVOLUTIONARY ALGORITHMS
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• No assumptions regarding the objective function, ‘black box’ 
optimization

• General structure of the algorithm:

 Start with random initial population

 Evaluate the fitness of the individuals based on the objective function

 Create new generation based on the population fitness

 Repeat last two steps for predefined number of iterations or until our 
requirements are met



GENETIC ALGORITHM
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• Method that mimics the process of natural evolution

• Oldest class of Evolutionary Algorithms (Holland - 1975)

• Originally, chromosomes were binary vectors

• Later, real-coded version appears, which works also with continuous real 
vectors



GENETIC ALGORITHM
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• Each iteration we:

 Evaluate fitness of each individual based on the objective function

 Select parents for the new generation based on this fitness

 Create children using the crossover operation on the parents

 With small probability mutate each element of the children

 Replace the old population with the new one (we can keep some number of elite 
individuals)



GENETIC ALGORITHM

24From http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ by David Ha

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/


CMA - ES
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• Stands for Covariance Matrix Adaptation Evolution Strategies

• Each iteration we:
 Generate random points based on the covariance matrix and the starting point

 From these points choose the ones with ‘good’ fitness

 Choose next starting point as weighted average of ‘good’ points

 Update covariance matrix based on ‘good’ points



CMA - ES

26From http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ by David Ha

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/


PARTICLE SWARM OPTIMIZATION
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• Imitation of human/animal social behaviour

• Swarm of particles, each particle is defined by its position and 
velocity

• Each iteration, velocity is adjusted to take into account:
 Actual velocity

 Each particle’s best position in the past

 Best actual position of any ‘neighbour’ particle

 Best overall achieved position of the whole swarm

• New position is obtained using this velocity 



PARTICLE SWARM OPTIMIZATION

28From https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif

https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif


PARALLELIZATION OF EA
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• Evaluation of objective function for each individual in the population is 
naturally parallel operation

• Same holds for selection, crossover and mutation in Genetic Algorithm

• It is also possible to take advantage in sorting, matrix multiplication and 
other procedures

• It is possible to use much larger populations/more iterations during the 
same time

GPU computing can be utilized very efficiently



HYBRID OPTIMIZATION
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• Evolutionary Algorithms: very robust, can get out of a local minima

• Gradient-based algorithms: very good at finding local minima

 Best practice: find very good & robust starting point using Evolutionary 
Algorithms and then improve it using deterministic  gradient-based 
algorithm



APPLICATION TO FINANCIAL MODELS
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RASTRIGIN FUNCTION MINIMIZATION
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ACKLEY FUNCTION MINIMIZATION
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VASICEK MODEL
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• Short rate: 𝑟𝑡 = 𝜅 𝜃 − 𝑟𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡

• In order to calibrate we try to fit calculated bond prices to market bond 
prices (or calculated rates to market rates)

• Vasicek bond price:

 𝑃 𝑡, 𝑇 = 𝐴 𝑡, 𝑇 ∗ exp(−𝑟 𝑡 ∗ 𝐵(𝑡, 𝑇))

 𝐵 𝑡, 𝑇 =
1−exp(−𝑘(𝑇−𝑡))

𝑘

 𝐴 𝑡, 𝑇 = exp 𝜃 −
𝜎2

2𝑘2
𝐵 𝑡, 𝑇 − 𝑇 + 𝑡 −

𝜎2

4𝑘
𝐵2(𝑡, 𝑇)



VASICEK CALIBRATION RESULTS – 31/08/18
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HESTON MODEL
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• Stock price: 𝑑𝑆𝑡 = 𝜇 − 𝑞 𝑆𝑡𝑑𝑡 + 𝑣𝑡𝑆𝑡𝑑𝑊𝑡
1

• Volatility: 𝑑𝑣𝑡 = 𝜅 𝜃 − 𝑣𝑡 𝑑𝑡 + 𝜉 𝑣𝑡𝑑𝑊𝑡
2

• In order to calibrate we try to fit implied volatilities from calculated 
option prices to the market volatility surface

• Call option price under Heston model:
 𝐶 = 𝑆0𝑒

−𝑞𝜏Π1 − 𝐾𝑒−𝑟𝜏Π2

 Π1 =
1

2
+

1

𝜋
 0
∞
ℜ

𝑒−𝑖𝑢 log 𝐾𝜙 𝑢−𝑖;𝜏
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1

2
+

1

𝜋
 0
∞
ℜ

𝑒−𝑖𝑢 log 𝐾𝜙 𝑢;𝜏
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HESTON MODEL CALIBRATION RESULTS
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