
Optimization of Financial Models
Using Evolutionary Algorithms and

GPU Computing

Michal Hojčka, Riccardo Gismondi

R7 CORP k.s.

30.5.2019, Modern Tools for Financial Analysis and Modeling Conference, Bratislava

OVERVIEW

1

• GPU computing

• Evolutionary Algorithms

• Application for Financial Models

GPU COMPUTING

2

GPU COMPUTING IN MATLAB

3

• Use Parallel Computing Toolbox (possibly also GPU Coder)

 No CUDA programming needed

 Lot of existing predefined functions

• Compile native code as mex file in order to be used in MATLAB

 More control over the code

 We understand what is happening inside

 Possible use in other programming languages

We choose this approach

GPU VS CPU - ARCHITECTURE

4

• CPU: specialized for flow control and fast
serial computation (optimized for latency)

• GPU: specialized for compute-intensive,
highly parallel computation needed for
graphic rendering (optimized for
throughput)

• ALU: arithmetic logic unit

• Cache: fast temporary memory

• DRAM: main memory

• Control: flow control unit

GPU VS CPU - FLOPS

5

• FLOP: floating-point
operation per second,
measure of raw
computational power

GPU VS CPU – MEMORY BANDWIDTH

6

• Memory Bandwidth:
amount of data that can
be theoretically
processed per second

CUDA

7

• Stands for Compute Unified Device Architecture

• Introduced by NVIDIA in 2007

• Extension to the C language that allows to program GPU without need
to learn complex programming concepts or to use graphic primitive
types

• CUDA Toolkit: can be downloaded from NVIDIA webpage

PROGRAMMING MODEL

8

• SIMT Architecture – single-instruction,
multiple-thread

• We write program (kernel) for one
thread -> it will be executed on many
threads

• Block of Threads – max 1024

• Grid of Blocks

GPU HARDWARE - MEMORY

9

• Per-thread local memory: very fast, very
small

• Per-block shared memory: can be used
within each thread-block, little bit slower

• Global memory: can be used from
anywhere on GPU, much slower

• Copying from CPU to GPU Global memory
is very time-consuming and ineffective

STREAMING MULTIPROCESSORS

10

• Manage the execution of Threads, memory access and the distribution
of arithmetic operations on the CUDA Cores

• Each Thread Block runs on a single SM, each SM can manage multiple
Thread Blocks, depending on the available memory

• There can be up to ~20 SMs on the graphic card, depending on the
model

CUDA CORES

11

• Unit for performing arithmetic operations

• Their architecture depends on the Compute Capability of the GPU

• Typical NVIDIA GPU has 100s – 1000s CUDA Cores

SCALABILITY

12

• Compatibility across
multiple devices

• Same code can run from
smartphones with 2 SMs to
newest GPUs with 10s of
SMs

GPU CARDS

13

• Scientific GPUs:

– Pros: better computing capability, optimized to calculate with double
precision

– Cons: much more expensive, cannot be used for monitor

• Gaming GPUs:

– Pros: cheaper, can be used also for monitor

– Cons: expensive double precision computing

• Example: GeForce GTX 1050 card (quite basic gaming card): CUDA
Capability version 6.1, 5 SMs, 128 CUDA Cores each -> 640 CUDA
cores

SINGLE VS. DOUBLE PRECISION

14

• Gaming GPUs are optimized for single-precision calculations

• From the performance point of view is important to use double
precision only where necessary

• Example: GeForce GTX 1050 card have 32-times smaller double
precision computing capability, which means ~10 times slower
performance

CUDA EXAMPLE – MATRIX MULTIPLICATION

15

• AB = C (each matrix has shape N x N)

• Serial code: N^3 arithmetic operations (N multiplications for each of
N^2 elements)

• Parallel code: N arithmetic operations done by each of N^2 threads

• Actual speedup will depend on the amount of possible parallel threads
and the effectivity of memory access

CUDA CODE COMPILATION FOR MATLAB

16

• C/C++/CUDA code can be compiled to be used in MATLAB as mex files
(.mexw64)

• Mex, Nvmex, CUDA mex etc. did not work for us

• Exporting DLL from Visual Studio with the help of mex libraries did work
for us

EVOLUTIONARY ALGORITHMS

17

OPTIMIZATION PROBLEM

18

• General optimization problem have the following form:

OPTIMIZATION TYPES

19

• Deterministic search methods:
 Gradient methods: e.g. Quasi-Newton methods (DFP, BFGS)

 Gradient-free methods: e.g. Direct methods, Surrogate methods

 Require some assumptions about the smoothness or continuity of the objective
function

 Extremely dependant on the starting point in case of multimodal functions

• Stochastic search methods:

 Random search

 Evolutionary algorithms

EVOLUTIONARY ALGORITHMS

20

• Motivated by the natural processes, lot of different types, such as:

 Genetic Algorithm (GA)

 Evolutionary Programming

 Evolution Strategies (ES)

 Genetic Programming

 Simulated Annealing

 Particle Swarm Optimization (PSO)

 Ant Colony Optimization

EVOLUTIONARY ALGORITHMS

21

• No assumptions regarding the objective function, ‘black box’
optimization

• General structure of the algorithm:

 Start with random initial population

 Evaluate the fitness of the individuals based on the objective function

 Create new generation based on the population fitness

 Repeat last two steps for predefined number of iterations or until our
requirements are met

GENETIC ALGORITHM

22

• Method that mimics the process of natural evolution

• Oldest class of Evolutionary Algorithms (Holland - 1975)

• Originally, chromosomes were binary vectors

• Later, real-coded version appears, which works also with continuous real
vectors

GENETIC ALGORITHM

23

• Each iteration we:

 Evaluate fitness of each individual based on the objective function

 Select parents for the new generation based on this fitness

 Create children using the crossover operation on the parents

 With small probability mutate each element of the children

 Replace the old population with the new one (we can keep some number of elite
individuals)

GENETIC ALGORITHM

24From http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ by David Ha

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

CMA - ES

25

• Stands for Covariance Matrix Adaptation Evolution Strategies

• Each iteration we:
 Generate random points based on the covariance matrix and the starting point

 From these points choose the ones with ‘good’ fitness

 Choose next starting point as weighted average of ‘good’ points

 Update covariance matrix based on ‘good’ points

CMA - ES

26From http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ by David Ha

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

PARTICLE SWARM OPTIMIZATION

27

• Imitation of human/animal social behaviour

• Swarm of particles, each particle is defined by its position and
velocity

• Each iteration, velocity is adjusted to take into account:
 Actual velocity

 Each particle’s best position in the past

 Best actual position of any ‘neighbour’ particle

 Best overall achieved position of the whole swarm

• New position is obtained using this velocity

PARTICLE SWARM OPTIMIZATION

28From https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif

https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif

PARALLELIZATION OF EA

29

• Evaluation of objective function for each individual in the population is
naturally parallel operation

• Same holds for selection, crossover and mutation in Genetic Algorithm

• It is also possible to take advantage in sorting, matrix multiplication and
other procedures

• It is possible to use much larger populations/more iterations during the
same time

GPU computing can be utilized very efficiently

HYBRID OPTIMIZATION

30

• Evolutionary Algorithms: very robust, can get out of a local minima

• Gradient-based algorithms: very good at finding local minima

 Best practice: find very good & robust starting point using Evolutionary
Algorithms and then improve it using deterministic gradient-based
algorithm

APPLICATION TO FINANCIAL MODELS

31

RASTRIGIN FUNCTION MINIMIZATION

32

-5

0

5 -5

0

5

0

10

20

30

40

50

60

70

80

ACKLEY FUNCTION MINIMIZATION

33

-10

-5

0

5

10 -10

-5

0

5

10
0

5

10

15

20

VASICEK MODEL

34

• Short rate: 𝑟𝑡 = 𝜅 𝜃 − 𝑟𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡

• In order to calibrate we try to fit calculated bond prices to market bond
prices (or calculated rates to market rates)

• Vasicek bond price:

 𝑃 𝑡, 𝑇 = 𝐴 𝑡, 𝑇 ∗ exp(−𝑟 𝑡 ∗ 𝐵(𝑡, 𝑇))

 𝐵 𝑡, 𝑇 =
1−exp(−𝑘(𝑇−𝑡))

𝑘

 𝐴 𝑡, 𝑇 = exp 𝜃 −
𝜎2

2𝑘2
𝐵 𝑡, 𝑇 − 𝑇 + 𝑡 −

𝜎2

4𝑘
𝐵2(𝑡, 𝑇)

VASICEK CALIBRATION RESULTS – 31/08/18

35

HESTON MODEL

36

• Stock price: 𝑑𝑆𝑡 = 𝜇 − 𝑞 𝑆𝑡𝑑𝑡 + 𝑣𝑡𝑆𝑡𝑑𝑊𝑡
1

• Volatility: 𝑑𝑣𝑡 = 𝜅 𝜃 − 𝑣𝑡 𝑑𝑡 + 𝜉 𝑣𝑡𝑑𝑊𝑡
2

• In order to calibrate we try to fit implied volatilities from calculated
option prices to the market volatility surface

• Call option price under Heston model:
 𝐶 = 𝑆0𝑒

−𝑞𝜏Π1 − 𝐾𝑒−𝑟𝜏Π2

 Π1 =
1

2
+

1

𝜋
 0
∞
ℜ

𝑒−𝑖𝑢 log 𝐾𝜙 𝑢−𝑖;𝜏

𝑖𝑢𝜙 −𝑖;𝜏
𝑑𝑢

 Π2 =
1

2
+

1

𝜋
 0
∞
ℜ

𝑒−𝑖𝑢 log 𝐾𝜙 𝑢;𝜏

𝑖𝑢
𝑑𝑢

HESTON MODEL CALIBRATION RESULTS

37

REFERENCES

38

• CUDA C Best Practices Guide v10.0, 2018:
(docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf)

• CUDA C Programming Guide v10.0, 2018:
(docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf)

• Cook, S: CUDA Programming, 2013

• Marthaler, D.E: An overview of Mathematical Methods for Numerical
Optimization, 2013

• Simon, D.: Evolutionary Optimization Algorithms, 2013

• Vasicek, O.: An Equilibrium Characterisation of the Term Structure, 1977

• Lewis, A.: Option Valuation Under Stochastic Volatility, 2000

