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OVERVIEW

* GPU computing
e Evolutionary Algorithms
e Application for Financial Models
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GPU COMPUTING



GPU COMPUTING IN MATLAB

e Use Parallel Computing Toolbox (possibly also GPU Coder)
= No CUDA programming needed
= | ot of existing predefined functions
e Compile native code as mex file in order to be used in MATLAB
= More control over the code
= We understand what is happening inside
= Possible use in other programming languages
» We choose this approach
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GPU VS CPU = ARCHITECTUR!

CPU: specialized for flow control and fast
serial computation (optimized for latency)
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GPU: specialized for compute-intensive,
highly parallel computation needed for
graphic rendering (optimized for
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ALU: arithmetic logic unit CPU GPU

Cache: fast temporary memory
DRAM: main memory
Control: flow control unit



GPU VS CPU - FLOPS

* FLOP: floating-point
operation per second, e
measure of raw . S
computational power

Figure 1 Floating-Point Operations per Second for the CPU and GPU
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GPU VS CPU - MEMORY BANDWIDTH

Theoretical Peak GB/s

* Memory Bandwidth:
amount of data that can

be theoretically B .
processed per second
" ?I’-‘_'-,!-_
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CUDA

e Stands for Compute Unified Device Architecture
* Introduced by NVIDIA in 2007

e Extension to the C language that allows to program GPU without need
to learn complex programming concepts or to use graphic primitive

types
e CUDA Toolkit: can be downloaded from NVIDIA webpage
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PROGRAMMING MODEL

Grid

Block (0,0)  Block (1,0)  Block (2, 0)

e SIMT Architecture — single-instruction,
mUItIple-thread Block (0, 1)’ Block (1, 1) NBlock (2, 1)

* We write program (kernel) for one
thread -> it will be executed on many
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- MEMORY

(1)

GPU HARDWAR

Thread

o _ Per-thread local
h - memory

* Per-thread local memory: very fast, very
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* Per-block shared memory: can be used |

within each thread-block, little bit slower etock 0.0 | Bosk 1.0 | Block 2.0
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* Global memory: can be used from a0, [ mea 0 [ meme |
anywhere on GPU, much slower
* Copying from CPU to GPU Global memory soct 0,01 B
is very time-consuming and ineffective §§§§§§§§§ f§§§§§§§
Block (0, 2) Block (
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STREAMING MULTIPROCESSORS

 Manage the execution of Threads, memory access and the distribution
of arithmetic operations on the CUDA Cores

 Each Thread Block runs on a single SM, each SM can manage multiple
Thread Blocks, depending on the available memory

 There can be up to ~20 SMs on the graphic card, depending on the
model
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CUDA CORES

* Unit for performing arithmetic operations
* Their architecture depends on the Compute Capability of the GPU
e Typical NVIDIA GPU has 100s — 1000s CUDA Cores
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SCALABILITY

 Compatibility across
multiple devices

e Same code can run from
smartphones with 2 SMs to
newest GPUs with 10s of
SMs
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Multithreaded CUDA Program
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GPU CARDS

e Scientific GPUs:

— Pros: better computing capability, optimized to calculate with double
precision

— Cons: much more expensive, cannot be used for monitor

* Gaming GPUs:

— Pros: cheaper, can be used also for monitor
— Cons: expensive double precision computing

e Example: GeForce GTX 1050 card (quite basic gaming card): CUDA
Capability version 6.1, 5 SMs, 128 CUDA Cores each -> 640 CUDA

cores

R 7 Quantitative Finance and Artificial Intelligence

13



SINGLE V5. DOUBL!

(1)

PRECISION

 Gaming GPUs are optimized for single-precision calculations

* From the performance point of view is important to use double
precision only where necessary

 Example: GeForce GTX 1050 card have 32-times smaller double
precision computing capability, which means ~10 times slower

Compute Capability

3.0, 3.5, 5.0,

3.9 3.7 5 9 2.3 6.0 6.1 6.2
32-bit floating-
point add, 192 192 128 128 64 128 128
multiply, multiply-
add
64-bit floating-

7 pol l”:. ‘Tdd' oty 8 64 4 4 32 4 4
Quantitative Finance and Artificial Intelligence mdL:ﬂ 1Py, MUILIptY

a




CUDA EXAMPLE - MATRIX MULTIPLICATION

 AB = C (each matrix has shape N x N)

* Serial code: N3 arithmetic operations (N multiplications for each of
N/A2 elements)

e Parallel code: N arithmetic operations done by each of N*2 threads

* Actual speedup will depend on the amount of possible parallel threads
and the effectivity of memory access
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CUDA CODE COMPILATION FOR MATLAB

 C/C++/CUDA code can be compiled to be used in MATLAB as mex files
(.mexw64)

e Mex, Nvmex, CUDA mex etc. did not work for us

e Exporting DLL from Visual Studio with the help of mex libraries did work
for us
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EVOLUTIONARY ALGORITHMS
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OPTIMIZATION PROBLEM

* General optimization problem have the following form:

[/1(X), LX), ..., i)]

min F(x)
X

subject to
gi(x) <0, j=1,2,...,mjq,

hi(X)

0.._ i — 1._‘ 2.._ a s oa f”-e['_l.
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OPTIMIZATION TYPES

* Deterministic search methods:
= Gradient methods: e.g. Quasi-Newton methods (DFP, BFGS)
= Gradient-free methods: e.g. Direct methods, Surrogate methods

= Require some assumptions about the smoothness or continuity of the objective
function

= Extremely dependant on the starting point in case of multimodal functions

e Stochastic search methods:
= Random search
= Evolutionary algorithms
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EVOLUTIONARY ALGORITHMS

 Motivated by the natural processes, lot of different types, such as:
= Genetic Algorithm (GA)
= Evolutionary Programming
= Evolution Strategies (ES)
= Genetic Programming
= Simulated Annealing
= Particle Swarm Optimization (PSO)
= Ant Colony Optimization
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EVOLUTIONARY ALGORITHMS

* No assumptions regarding the objective function, ‘black box’
optimization
e General structure of the algorithm:
= Start with random initial population
= Evaluate the fitness of the individuals based on the objective function
= Create new generation based on the population fitness

= Repeat last two steps for predefined number of iterations or until our
requirements are met
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GENETIC ALGORITHM

Method that mimics the process of natural evolution
Oldest class of Evolutionary Algorithms (Holland - 1975)
Originally, chromosomes were binary vectors

Later, real-coded version appears, which works also with continuous real
vectors
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GENETIC ALGORITHM

* Each iteration we:
= Evaluate fitness of each individual based on the objective function
= Select parents for the new generation based on this fitness
= Create children using the crossover operation on the parents
= With small probability mutate each element of the children

= Replace the old population with the new one (we can keep some number of elite
individuals)
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ETIC ALGORITHM
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http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

CMA - ES
e Stands for Covariance Matrix Adaptation Evolution Strategies
e Each iteration we:

= Generate random points based on the covariance matrix and the starting point
" From these points choose the ones with ‘good’ fitness

= Choose next starting point as weighted average of ‘good’ points

= Update covariance matrix based on ‘good’ points

. o ot : - Aot )
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PARTICLE SWARM OPTIMIZATION

* |mitation of human/animal social behaviour
 Swarm of particles, each particle is defined by its position and

velocity
* Each iteration, velocity is adjusted to take into account:

= Actual velocity

= Each particle’s best position in the past

= Best actual position of any ‘neighbour’ particle

= Best overall achieved position of the whole swarm

* New position is obtained using this velocity

27
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PARTICLE SWARM OPTIMIZATION
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https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif

PARALLELIZATION OF EA

e Evaluation of objective function for each individual in the population is
naturally parallel operation

 Same holds for selection, crossover and mutation in Genetic Algorithm

e |tis also possible to take advantage in sorting, matrix multiplication and
other procedures

* |tis possible to use much larger populations/more iterations during the
same time

» GPU computing can be utilized very efficiently
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HYBRID OPTIMIZATION

e Evolutionary Algorithms: very robust, can get out of a local minima
* Gradient-based algorithms: very good at finding local minima

» Best practice: find very good & robust starting point using Evolutionary
Algorithms and then improve it using deterministic gradient-based
algorithm
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APPLICATION TO FINANCIAL MOD.
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RASTRIGIN FUNCTION MINIMIZATION

Interior-point algorithm with BFGS Hessian
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ACKLEY FUNCTION MINIMIZATION
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VASICEK MODEL

* Shortrate:r; = k(0 — r.)dt + adW;

* |In order to calibrate we try to fit calculated bond prices to market bond
prices (or calculated rates to market rates)

* Vasicek bond price:
» P(t,T) =A(t,T) *exp(—r(t) * B(t,T))

. B(t, T) el 1—exp(;k(T—t))

AT = exp{(60 - ) (B, T) — T + 1) — Z B¢, 1))}
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VASIC

Interest Rate

7 Quantitative Finance and Artificial Intelligence
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HESTON MODEL

* Stock price: dS; = (u — q)S;dt + U S dW}
* Volatility: dv; = k(0 — v, )dt + &/v dW¢
* |In order to calibrate we try to fit implied volatilities from calculated
option prices to the market volatility surface
e Call option price under Heston model:
» C = Sye 1M, — Ke "1,

. _ 1 l oo e—iu log K¢(u—l,T)
h =2+ nfO iR( iug(—i;7) )du

e —iulog K :
m HZ =1+%fo m(e : ¢(u,T))du

2 u
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HESTON MODEL CALIBRATION RESULTS
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