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Optimization in Financial Applications with MATLAB

 Financial Optimization 

 Optimization Methods

 Customized Optimization Models 
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Financial Optimization
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– Mean-Variance Portfolio Optimization

– Conditional Value-at-Risk Portfolio Optimization

– Mean-Absolute Deviation Portfolios

– Time Series Regression Models

– Conditional Mean Variance Models

– Multivariate Models

– Linear/ Nonlinear Regression

– Probability disribution fitting

– Machine Learning, e.g.,  SVM, NN,...

– Nonlinear Regression, Convolutional Neural Networks

Financial Optimization in MATLAB

Financial

Statistics

Econometrics

Neural Network

Optimization
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Optimization Methods
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Optimization Problem

Objective Function
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Typically a linear or nonlinear function

Linear constraints
 inequalities
 equalities
 bounds

Nonlinear constraints
 inequalities
 equalities
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How to solve an optimization problem ?

What do you know about your optimization problem ? 

information

accuracy

information

runtime
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Variables & Constraints 
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Objective Function
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Least-squares/curve fitting

Quadratic f(x) = xTAxLinear f(x) = ATx

General f(x)

f(c)=S[g(xk;c) – yk]
2
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Numerical Optimization
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function [f,df] = objective(x)
f = ...    % function value

df = ...   % gradient vector

 Fewer function evaluations

 More accurate

Whenever possible, provide gradient/hessian information!
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Derivative-Free Optimization

?f fmincon

Repeatedly sample

several points

Direct Search

Genetic Algorithm
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Approaches in MATLAB

 Local Optimization 
– Finds local minima/maxima

 Uses supplied gradients or estimates them

 Applicable for large scale problems with 
smooth objective function 

– Faster/fewer function evaluations

 Global Optimization
– No gradient information required

– Solve problems with non-smooth, 
discontinuous objective function
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Solvers
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Quadratic f(x) = xTAx

Linear f(x) = ATx

General f(x)

f(c)=S[g(xk;c) – yk]
2

Objective function Solver

linprog

quadprog

intlinprog

lsqlin
lsqnonlin

fminunc
fmincon

Optimization Toolbox



17

Solvers
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How to Improve Performance?

 Derivatives calculations
– Gradients

– Hessian matrix

 Default approach
– Approximation: Finite differences perturbations ( VERY EXPENSIVE! )

 Alternative approaches
– Cheaper approximations

 LBFGS

 Supply your own approximation

 Analytical calculation



19

Hessian Analytical Calculation

 Not easy, in general, to calculate analytical Hessian

 Can MATLAB help?

– YES! Symbolic MathToolbox
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Sample Problem

 Problem: Volatility surface estimation for the pricing of 

call options. Calibration using market options.

 Objective: g(x ) = ||f(x)||2

– fj(x) = C(xj,Kj,Tj) – Cj

 K strikes

 T maturities

 C closing prices

 BSM model (Black Scholes and Merton)
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Numerical results ( problem size 209)

Gradients Function evaluations Time (secs)

Numerical 100,056 1351

Numerical 

(using parallel)

100,056 642

Analytical 52 3.41
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MATLAB Code

%Define symbolic residuals

x = evalin(symengine,['n:=',num2str(n),';[x[j] $ j = 1..n]']);

f = evalin(symengine,['[f[j] $ j = 1..n]']);

for jj=1:n

d1 = (log(S(jj)/K(jj)) + 

(r+x(jj)^2/2)*T(jj))/(x(jj)*sqrt(T(jj)));

d2 = d1 - x(jj)*sqrt(T(jj));

val = S(jj)*0.5*(1+erf(d1/sqrt(2))) - ...

K(jj)*exp(-r*T(jj)) * 0.5*(1+erf(d2/sqrt(2)));

f(jj) = (val-CP(jj));   

end

obj = f*f.';
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MATLAB Code 

%Define objective gradient and hessian

grad = diff(obj,x);

hess = jacobian(grad,x);

%Transform symbolics into MATLAB function handles

symGrad = matlabFunction(grad);

symHess = matlabFunction(hess);
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Example of Use

 References

– Paloschi J and Krishnamurthy S – Improving MATLAB performance when solving

financial optimization problems – Wilmott Magazine – May 2011

– https://uk.mathworks.com/matlabcentral/fileexchange/33597-improving-matlab-

performance-when-solving-financial-optimization-problems

https://uk.mathworks.com/matlabcentral/fileexchange/33597-improving-matlab-performance-when-solving-financial-optimization-problems
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Customized Optimization Models
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Supported Portfolio Optimization Models

 Mean-Variance Portfolio Optimization

 Conditional Value-at-Risk Portfolio Optimization

 Mean-Absolute Deviation Portfolio Optimization

Financial Toolbox
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Customized Portfolio Optimization -

Deployment

 Compile your MATLAB 

optimization model for your 

dedicated platform

 Make it available for your 

enterprise environment
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Customer User Stories Involving Optimization in Finance

 https://uk.mathworks.com/company/user_stories/search.html?q=&fq=produ

ct:OP%20marketing-industry:financial-services

https://uk.mathworks.com/company/user_stories/search.html?q=&fq=product:OP marketing-industry:financial-services
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Summary

 Optimization for financial applications is built within MATLAB 

toolboxes covering many standard applications

 A large variety of optimization algorithms available in MATLAB® 

Optimization Toolbox™ and Global Optimization Toolbox™

 Customized optimization models made easy by 

– quick modeling (Math to MATLAB)

– advanced optimization process diagnostics 

– rapid deployment  
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Thank you ! 


