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What is entropy? (1)

Simply speaking, entropy is 
measure of disorder, uncertainty 

or surprise.
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What is entropy? (2)
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Branch Measure of… Low entropy High entropy

Thermodynamics
…particle

disorder

Information

Theory

…message

uncertainty

or surprise

Risk

Management

….market 

volatility 

or surprising

P&L outcome

“Sun will 

rise

tomorrow”

“It will be 

sunny or rainy 

tomorrow”
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Motivation: Why entropy?

1. No assumptions about underlying distribution

2. Portfolio diversification leads to decrease in entropy 
by definition – subadditivity (not true for VaR) 

3. More robust than standard deviation

4. Capped for distributions on finite interval 
(not true for standard deviation)

5. Always exists (not true for standard deviation, 
e.g. Cauchy or other fat-tail distributions)

6. Easy to interpret as measure of surprise

5 of 20



Mathematical model of entropy (1)

• Consider two possible outcomes of experiment with 
probabilities p and 1-p

• If p = 0 or p = 1 there is no uncertainty:

only one outcome is possible and it always occurs

• However for p = ½ uncertainty is at maximum:

50:50  no idea which outcome more likely to occur

• We are looking for function f(p) fulfilling 

• f(0) = f(1) = 0

• Maximum occurs for p = 0.5
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Mathematical model of entropy (2)

• One possible function is Shannon entropy:
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𝐻 = − 𝑝log𝑎 𝑝 + 1 − 𝑝 log𝑎(1 − 𝑝)

Notes:

1) a = 2 for graph  entropy is expressed in bits (units will be discussed later)

2) 0 log 0 is defined as 0 (i.e. value of  p log(p) limit for p approaching zero)

Source: own work



Mathematical model of entropy (3)

• Shannon entropy can be generalized for:

1. Discrete distributions (incl. distributions with 𝑛՜∞)

2. Continuous distributions (“reduced entropy”) 

Note: Reduced entropy can be negative. Lowest value

(i.e. “no uncertainty”) is −∞.
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𝐻 = −෍

𝑖=1

𝑛

𝑝𝑖log𝑎(𝑝𝑖)

𝐻 = −න
𝑅

𝑓 𝑥 log𝑎 𝑓 𝑥 𝑑𝑥



Entropy and perfect certainty (1)

• Perfect certainty  obviously zero entropy

• Inspired by 3rd law of thermodynamics:

“Entropy of every system at absolute zero can 
be taken to be equal to zero”

• Shannon entropy of discrete distribution is zero by 
definition, but this is not the case for reduced 
entropy

• Total entropy of continuous distribution is in fact 
given by
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𝐻 = −න
𝑅

𝑓 𝑥 log𝑎 𝑓 𝑥 𝑑𝑥 − log𝑎 ∆𝑥



Entropy and perfect certainty (2)

• Term −log𝑎 ∆𝑥 is “residuum” of switching from 

discrete to continuous realm

• Term approaches infinity as “delta” becomes “dee”

• To have H = 0, integral has to approach minus 
infinity for perfect certainty
(!intuitive explanation, not mathematically fully correct!)

• Reduced entropy should be used only for:

• Peer comparison

• Time comparison

• Overall, sufficient for use in finance
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Entropy units

• Entropy unit name depends on logarithm base used

• a = 2  bit

• a = 3  trit

• a = 10  dit

• a = e (≈ 2.71)  nat

• Bits and nats are often used because…

• …bits are usual measure of information content 
(entropy of x bit means that one has to use x binary 
numbers for message encoding)

• …nats are connected with natural logarithm

• Entropy can be converted from base a to base b by 
dividing by log𝑎𝑏
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How to calculate entropy?

1. Histogram estimator:

• Based on definition for discrete case

• h…width of histogram bins, k…number of bins
ni…# observations in ith bin, n…total # of observations

2. Kozachenko-Leonenko estimator (1D data):

• ri is distance of observation to its nearest neighbour:
𝑟𝑖 = min 𝑎𝑖+1 − 𝑎𝑖; 𝑎𝑖 − 𝑎𝑖−1 for sorted observations 𝑎𝑖

• If ri = 0 then 𝑟𝑖: = 1/ 𝑛

• γ ≈ 0.5772156649 (Euler-Mascheroni constant)

• Note: observation is actual value of e.g. P/L 12 of 20

෡𝐻 = −෍

𝑖=1
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log𝑎
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+ log𝑎(ℎ)
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1

𝑛
෍
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𝑛
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Results – US equity markets
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Source: Bloomberg, own calculation



Results – EUR/CZK
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FX intervention

started

FX commitment

abandoned

Source: Bloomberg, own calculation



Results – actual portfolios (03/2019)
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legend:

FI…Fixed Income Eq…Equity (shares)

Liq…Liquidity ptf Inv…Investment ptf

Fwd…Artificial cash position (currency overlay)

Source: own calculation



Results – entropy and behavioural 
finance (1)

• Entropy is more robust than standard deviation

• less susceptible to outliers

•  less “overreaction” of market

• Theoretical example:

• 10,000 random numbers distributed according to 
N(0,1)  std. dev. is 0.979, entropy 1.387

• Add 8 outliers: -7, -4.5, -4.5, -3, 3.9, 5, 5, 5.1

•  std. dev. is 0.987 (increase 0.8%), entropy 1.393 
(increase 0.47%)

• Since entropy does not change as rapidly as 
standard deviation, investors should not overreact

• As a result, markets could be calmer, with only 
“shallow” crises
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Results – entropy and behavioural 
finance (2)
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• Real example:

• Hypothesis: Had investors followed entropy instead of 
std. dev, VaR or CVaR, sell-off of Russian equities would 
not have been so rapid after Crimea crisis outbreak

Crimea crisis

Source: Bloomberg, own calculation



Using MATLAB for entropy calculation
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Data gathering

Algorithm

Results 
sharing

T = readtable

(inDataFileName,'sheet',sheetName);

TT = table2array(T(:,1)); 

TT(k,3) = std(X); %Standard Deviation

TT(k,4) = prctile(X,100 - alpha); %VaR    

TT(k,5) = mean(X(X <= TT(k,4))); %CVaR             

TT(k,6) = EntropyEstimationKL(X); %Entropy estim.

writetable(timetable2table(T), outDataFileName, 

'FileType','spreadsheet','Sheet','RiskMetrics')

h = plot(T.Time, table2array(T(:,3:end-1)));

savefig([outFigName, '.fig']); %MatLab figure

print([outFigName, '.png'],'-dpng'); %PNG file

From raw Excel data…

…to graphic output for sharing

Appendix C



Conclusion
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• Entropy is measure of disorder, surprise and information 
content

• Can therefore be used as measure of market risk

• Main advantages of entropy are:

• Independence of underlying distribution

• Always exists (stdDev does not)

• Able to measure diversification correctly (VaR does not)

• Easily to interpret as “level of surprising results”

• More robust than e.g. standard deviation

• Hypothesis: using entropy can lead to calmer markets
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Appendix A: Shannon entropy is 
subadditive risk measure (1)

• Consider two portfolios A and B with m and n possible 
P/L outcomes:

• Combine these two portfolios into one A∗B,
there are mn possible P/L outcomes (intersect):

• Entropy of combination is

where            is conditional probability of i-th outcome in portfolio 
A if j-th outcome in B occurred simultaneously

𝐴 =
𝐴1 … 𝐴𝑚

𝑝1
𝐴

… 𝑝𝑚
𝐴 𝐵 =

𝐵1 … 𝐵𝑛

𝑝1
𝐵

… 𝑝𝑛
𝐵

𝐴 ∗ 𝐵 =
𝐴1 + 𝐵1 … 𝐴1 + 𝐵𝑛
𝜋11 … 𝜋1𝑛

𝐴2 + 𝐵1 … 𝐴2 + 𝐵𝑛
𝜋21 … 𝜋2𝑛

… … 𝐴𝑚 + 𝐵𝑛
… … 𝜋𝑚𝑛

𝐻(𝐴 ∗ 𝐵) = −෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝜋𝑖𝑗log𝑎𝜋𝑖𝑗 = −෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑝𝑗
𝐵
𝑝𝑖

𝐴|𝐵=𝑗
log𝑎 𝑝𝑗

𝐵
𝑝𝑖

𝐴|𝐵=𝑗

𝑝𝑖
𝐴|𝐵=𝑗



Appendix A: Shannon entropy is 
subadditive risk measure (2)

• After some algebra it is possible to write

where

• Naturally, if A and B are independent:

1.

2. Any knowledge about B cannot be used for decreasing 
uncertainty in A, so H(A) should intuitively be maximum 
of H(A|B)

Note: this statement can be proven rigorously with Jensen inequality

𝐻(𝐴 ∗ 𝐵) = 𝐻(𝐴|𝐵)+𝐻(𝐵)

𝐻 𝐴 𝐵 = −෍

𝑗=1

𝑛

𝑝𝑗
𝐵
෍

𝑖=1

𝑚

𝑝𝑖
𝐴|𝐵=𝑗

log𝑎 𝑝𝑖
𝐴|𝐵=𝑗

Partial entropy of A

(entropy of A if j-th outcome in B occurred)

Conditional entropy of A

(entropy of A if B influences A)

𝐻 𝐴 𝐵 = 𝐻(𝐴)



Appendix A: Shannon entropy is 
subadditive risk measure (3)

• Combining…

1.

2.

• …we have

• This means that combination of two portfolios 
together reduces risk 
 entropy is subadditive risk measure

• This can be proven for continuous distributions as 
well

𝐻(𝐴 ∗ 𝐵) = 𝐻(𝐴|𝐵)+𝐻 𝐵

𝐻(𝐴|𝐵) ≤ 𝐻 𝐴

𝑯(𝑨 ∗ 𝑩) ≤ 𝑯(𝑨)+𝑯 𝑩



Appendix B: Other types of entropy

• Tsallis entropy:

• Renyi entropy:

• For q approaching 1, both of them become Shannon 
entropy

• For q = 0 Renyi entropy becomes entropy in 
thermodynamics sense (Clausius/Boltzman definition):

𝐻𝑇 =
𝑘

𝑞 − 1
1 −෍

𝑖=1

𝑛

𝑝𝑖
𝑞

𝐻𝑅 =
𝑘

1 − 𝑞
log𝑎 ෍

𝑖=1

𝑛

𝑝𝑖
𝑞

H = 𝑘 log𝑎𝑛 or in thermodyn. notationS = 𝑘 log𝑎Ω



Appendix C: MatLab code for 
Kozachenko-Leonenko estimator

function E = EntropyEstimationKL(input)    

n = length(input);       

%distance to the nearest neighbour

input = sort(input);

r = zeros(1,n);

r(1) = input(2)-input(1);    

r(2:end-1) = min(input(3:n) - input(2:n-1), input(2:n-1) - input(1:n-2)); 

r(n) = input(n)-input(n-1);    

%elimination of denegerated values

r(r==0) = 1/sqrt(n); 

%actual estimation of entropy

E = (1/n)*sum(log(r))+log(2*(n-1))+0.5772156649;



Disclaimer

• This presentation expresses the opinions of the 
presenter, which are not necessarily the same as 
those of the CNB

• This presentation is for educational purposes 

• This presentation is neither an offer nor a 
solicitation to sell or buy any security 

• This presentation is not investment advice

• The CNB and the presenter shall not be responsible 
for any problems, losses or other negative issues 
caused by the implementation and use of any 
method or approach described in this presentation


