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Abstract 
This paper presents simple SIMULINK library for recursive parameter estimation of linear 
dynamic models ARX, ARMAX and OE. Several recursive identification methods were 
implemented in this library: Least Square Method (RLS), Recursive Leaky Incremental 
Estimation (RLIE), Damped Least Squares (DLS), Adaptive Control with Selective Memory 
(ACSM), Instrumental Variable Method (RIV), Extended Least Square Method (RELS), 
Prediction Error Method (RPEM) and Extended Instrumental Variable Method (ERIV). To 
cope with tracking the time-variant parameters several forgetting factor and modification of 
basic algorithm are taken into consideration. 

1 Introduction 
There exist many complex packages for system identification purposes in MATLAB and 

SIMULINK environment. These toolboxes provide solution to wide range of the problems from the 
area of system identification, e.g. System Identification Toolbox [11] and Continuous Identification 
Toolbox [6]. 

There also exist many special-purpose programs and libraries for MATLAB and SIMULINK, 
e.g. Idtool [3]. These simple tools provide solution to specific problems from the concrete part of the 
area of system identification. 

The proposed Recursive Identification Algorithms Library (RIA) fall into category of simple 
libraries for SIMULINK environment and is designed for recursive estimation of the parameters of the 
linear dynamic models ARX, ARMAX and OE. The Recursive Identification Algorithms Library 
consists of several user-defined blocks. These blocks implement several recursive identification 
algorithms: Least Square Method (RLS) and its modifications, Recursive Leaky Incremental Estimation 
(RLIE), Damped Least Squares (DLS), Adaptive Control with Selective Memory (ACSM), Instrumental 
Variable Method (RIV), Extended Least Square Method (RELS), Prediction Error Method (RPEM) 
and Extended Instrumental Variable Method (ERIV). The Recursive Identification Algorithms Library 
can be used for simulation or real-time experiment (e.g. Real Time Toolbox) in educational process 
when it is possible to demonstrate the properties and behaviour of the recursive identification 
algorithms and forgetting factors under various conditions and can be also used in the identification 
part of self-tuning controllers. 

2 Model structure 
The basic step in identification procedure is the choice of suitable type of the model. General 

linear model takes the following form: 
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are shift operators polynomials and ( )ky , ( )ku  are output and input signals. White noise ( )kn  
is assumed to have zero mean value and constant variance. 

All linear models can be derived from general linear model by simplification. In the Recursive 
Identification Library following linear dynamic models are taken into consideration. These are ARX, 
ARMAX, OE models. 

ARX model (C=D=F=1):¨ 
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ARMAX model (D=F=1): 
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OE model (A=C=D=1): 
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3 Recursive parameter estimation 
The recursive parameter estimation algorithms are based on the data analysis of the input and 

output signals from the process to be identified. Many recursive identification algorithms were 
proposed [10][16][17]. In this part several well-known recursive algorithms with forgetting factors 
implemented in Recursive Identification Algorithms Library are summarized. 

3.1 RLS 
This method can be used for parameter estimate of ARX model. The algorithm can be written in 

following form: 
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where: ( )kL  denote gain matrix, ( )kC  is the covariance matrix of the estimated parameters, 

( )kΘ̂  is the vector that contains the estimated parameters and ( )kφ  is the data or regression vector 
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This RLS algorithm assumes that the parameters of the model process are constant. In many 
cases, however, the estimator will be required to track changes in a set of parameters. To cope with 
tracking the time-variant parameters some adjustment mechanism must be introduced in the previous 
basic equations. Several implementations have been proposed [10][16][9][4]. 

RLS with exponential forgetting 
Covariance matrix is given by 
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where 10 << λ  is forgetting factor. 

The algorithm is convenient for identification and adaptive control of slowly varying systems. 
This method has the main disadvantages that when the inputs is not persistent, and as the old data is 
discarded in the estimation procedure, the matrix ( )kC  increases exponentially with rate λ . This is 
called estimator wind-up. 

RLS with variable exponential forgetting 

The variable exponential forgetting is given by relation 

 ( ) ( ) 00 11 λλλλ −+−= kk  (10) 
with ( ) 99,0;95,00 0 ∈= λλ  

This algorithm is convenient for identification of time-invariant systems and self-tuning 
controllers. 

RLS with fixed directional forgetting 

To solve the problem of estimator wind-up, an estimator with directional forgetting can be used. 
This estimator forgets the information only in the directions in which new information is gathered and 
assures the convergence of the estimations and avoids large changes in the parameters. 

Covariance matrix is 
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and directional forgetting factor 
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where λ′  can be chosen as in exponential forgetting algorithm. 

RLS with adaptive directional forgetting 

Detailed description of this algorithm can be found in [8]. 
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The value of adaptive directional forgetting factor is 
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RLS with exponential forgetting matrix 

This technique is able to cope with the cases where parameters have distinct rates of change in 
time. Here, is described a recursive estimation algorithm with exponential forgetting matrix factors in 
order to provide distinct information discounts for each parameter. The RLS with exponential 
forgetting matrix is governed by the following equations [10]: 
 ( ) ( )1 1 Tk kΛ − = Ω − ΩC  (17) 
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representing a matrix with diagonal elements equal to square roots of the forgetting factors 
associated to each column of the regression vector φ . 

RLS with constant trace algorithm 

Constant trace algorithm could also be used to keep the matrix ( )kC  limited by scaling the 
matrix at each iterations in a way that trace of ( )kC  is constant. The regularized constant-trace 
algorithm is given by the following equations: 
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in which 1c  and 2c  have positive values given by, 
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Exponential Forgetting and Resetting Algorithm 

This modification of RLS places upper and lower bounds on the trace of the covariance matrix 
while maintaining a robustly valued forgetting factor. The algorithm takes the following form: 
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3.2 RWLS 
The recursive weighted least square [15] where the weighting data ( )kφ  is denoted as ( )kq  

becomes 
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where 10 << λ  is forgetting factor. 

 

3.3 RLIE 
The recursive leaky incremental estimation [18] can be describes as follows: 
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where Γ  denotes the stabilizing operator, defined as 
 11 qγ −Γ = −  (35) 

and [0,1]γ ∈  is the stabilizing parameters which is preselected by the user. 

3.4 DSL 
Damped least squares (DLS) algorithm is an extended version of the recursive simple least 

square (RLS) algorithm. 

The DLS criterion is 
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The weighting matrix ( )d kΛ  is diagonal and weights the parameters variations. For an n-
parameters model, 
 ( ) ( ) ( ) ( )[ ]kkkdiagk nd ααα K211 =−Λ  (37) 

A standard form of the DLS algorithm is given [12] 
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where ir  are the succesive basic vectors, e.g. 
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3.5 ACSM 
Adaptive control with selective memory [7] updates parameter estimates only when there is new 

information present. The information increases and estimator eventually stops. The algorithm consists 
of several steps: 
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Step 3: If ( ) 0A k = , set 
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Step 6:  Set 1k k= +  and go to step 1 

3.6 RIV 
It can be shown that if the process does not meet the noise assumption made by the ARX model, 

the parameters are estimated biased and non-consistent. This problem can be avoided using 
instrumental variable method. 

The algorithm takes the form 
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where: ( )kL  denote gain matrix, ( )kC  is the covariance matrix of the estimated parameters, 

( )kΘ̂  is the vector that contains the estimated parameters, ( )kφ  is the data or regression vector, ( )kz  
is instrumental variable 
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Choice of instrumental variable determines behaviour of the IV method in usage. Some 
common choices for generating instruments are proposed in [16]. 

Typical choice of model independent instrumental variable is 
 ( ) ( ) ( )[ ]Tnbnakukuk −−−= ,,1 Kz  (54) 

and model dependent instrument is 
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where ( )1−kyu  is generated by calculating following difference equation with current 
parameter estimates 
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3.7 RELS 
This method is used for parameter estimations of ARMAX model. Formally it takes the same 

form as RLS. However, the regression and parameter vector are different. 

Parameter vector 
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Regression vector 
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where ( )kη  denotes the residual and ( )kê  is the prediction error. 

It usually speeds up the convergence of the RELS algorithm if the residuals (a posteriori) rather 
than the prediction errors (a priori) are used. 

3.8 ERIV 
This method ensures improved accuracy and greater speed of convergence than RIV. The 

method is based on choice of instruments vector which has more elements than there are parameters in 
the model to be estimated. Derivation of this algorithm can be found in [16]. Instruments can be 
chosen according to [2][16]. 

The set of equations describe this algorithm 
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3.9 RPEM 
The recursive prediction error method (RPEM) allows the online identification of all linear 

model structure. Since all model structure except ARX are nonlinearly parameterized, no exact 
recursive algorithm can exist; rather some approximations must be made [13][14][16]. In fact, the 
RPEM can be seen as a nonlinear least squares Gauss-Newton method. 

The Gauss-Newton technique is based on the approximation of the Hessian by the gradients. 
Thus, the RPEM requires the calculation of the gradient ( )kψ  of the model output with respect to its 
parameters: 
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RPEM algorithm takes the form  
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where ( )kP  denotes covariance matrix. 



The model structure will influence the way in which the quantities ( )kê  and ( )kψ  in the 
algorithm are computed from data and the previously computed parameter estimate. 

4 RECURSIVE IDENTIFICATION ALGORITHMS LIBRARY (RIA) 
The Recursive Identification Algorithm Library is designed for recursive parameter estimation 

of linear dynamics model ARX, ARMAX, OE using recursive identification methods: Least Square 
Method (RLS), Recursive Leaky Incremental Estimation (RLIE), Damped Least Squares (DLS), 
Adaptive Control with Selective Memory (ACSM), Instrumental Variable Method (RIV), Extended 
Least Square Method (RELS), Prediction Error Method (RPEM) and Extended Instrumental Variable 
Method (ERIV). 

The Recursive Identification Algorithm Library is depicted in Fig. 1. The Library consists of 18 
user-defined blocks and is designed for MATLAB&SIMULINK environment. Each block is realized 
as an s-function. 

Figure 1: Recursive Identification Algorithms Library 

Each block is masked by user-defined dialog. Several necessary input parameters should be 
input through this dialog. These are: type of forgetting factor and its value, degrees of polynomials, 
sampling period, initial values of parameter estimate, covariance matrix and data vector, etc. Each 
block also contains the help describes the meaning of each parameter, inputs and outputs and used 
recursive identification algorithms. Example of input dialog is shown in Fig. 2. 

 



Figure 2: Input dialog of the identification block 

Input/output data from object under identification process are inputs to the identification block. 
Another input (start/stop/restart) is used for control the identification algorithm. This input provides 
possibility of start, stop and restart the identification algorithm in selected instant of time. Outputs of 
the block are estimate of parameter vector, one-step prediction of output of model, covariance matrix 
and data vector.  

Example of application of the identification block in the model is illustrated in Fig. 3. 

Figure 3: Example of application of identification block 

5 Conclusion 
The Recursive Identification Algorithm Library is designed for recursive parameter estimation 

of linear dynamics model ARX, ARMAX, OE using recursive identification methods. The library can 
be used e.g. in identification part of self-tuning controller or in educational process when it is possible 
to demonstrate the properties and behaviour of the recursive identification algorithms and forgetting 
factors under various conditions. 
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