EMBEDDED RTOSFOR SKCUBE SATELLITE
J. Slaka®, S. Petrik M. Halag

4nstitute of Robotics and Cybernetics, Faculty t&diical engineering and Information technology
Slovak University of Technology, llkosbva 3, Bratislava, Slovakia
®Slovak Organization for Space Activities (SOSA)afislava, Slovakia

Abstract

In recent years small satellites built by universities became very popular. These
satellites are called CubeSats and their main purpose is to provide on hand
experience with the space technology. Many papers covering thisfield deals only with
hardwar e design and reliability, but not softwar e, which is often more mission critical
and has become a reason of failures in many CubeSat missions. The paper is
dedicated to design a simple real time embedded kernel build from scratch. The
kernel is cross platform and designed with safety critical code standards taken into
account. The operating system allows multi process communication, preemption and
incor por ates basic priority scheduling.

1 Introduction

The small space setallites, called CubeSats, bedecteical standard in space research
missions which was developed by University of Stardland California Technology Institute. The
CubeSats provide on hand experience with the smatmology, and basically can solve the same
type of problems as the commercial satellites dwo.tRose reasons, they attracted attention of many
researcher groups, see for instance [5], [6],[81],

The project of the first Slovak satellite calledCskoe is an initiative of the Slovak Organization
for Space Activities [1] together with the Technithiversity in Zilina and the Slovak University of
Technology. The launch of the satellite is schedline2016. The skCube satellite is designedaas
cube with the edge of size 10cm and weight less ftig. The main mission of the skCube is a
scientific experiment — Creation of Earths UV mdphe satellite will incorporate all necessary
hardware for its operation and scientific measurgm@s a main onboard computer, power supply
unit, radio communication, experiments, etc. Onehaf most critical components will be onboard
computer, which will control all the hardware orabih, do attitude control, mission control, etc.

To ensure reliability of this critical componengvsral decisions in both hardware and software
design has to be made. In this paper only the tipgraystem of the onboard computer is discussed,
because all decisions including hardware and softweaeliability and redundancy in space
environment are beyond the scope of this papers€ourity reasons and better debugging a simple
monolithic kernel, which is compiled together wah user programs, was chosen. This architecture
provides safer operation than OS which runs birggrams (not compiled together with OS),
because in whole system, there is only one pototerser program which is static. This means that
address contained in this pointer is determinednducompilation, and there is no threat of wild
pointer or other hazards.

The operating system schedules standard tasksdimgdo their priority between 1 (lowest)
and 255 (highest). In the skCube mission all progr@perating experiments, radio communication,
data compression etc. are handled as standard fdtiksde determination and control, together with
the satellite health monitoring supervisor are riiale tasks, and will be handled as interrupts
according to their priority.

2 Real time operating system design

For the first Slovak satellite called skCube a @rafive single stack Operating System (OS)
was chosen. All non time critical tasks will run @ooperative mode and real time tasks will be
handled as interrupts. In cooperative multitaskimg possible points of tasks preemption in the code
are set by the developer. Thus, the order of eimcudf given input set of tasks is predictable,

allowing for a simpler execution simulation thartle case of preemptive multitasking. This decision
was made, because other freely available Real Operating Systems (RTOS) were not suitable in
terms of RAM space demands, because a preempti@SR€&quires separate stack for each task. It
appears unreasonable to employ complex RTOS witknawn blocking mechanisms for simple
control logic used in the skCube satellite [2]. Almany available RTOS kernels do not meet safety
critical code standards, as for example Misra COdNASA JPL Code Guideline [3]. Cooperative
multitasking will provide better software desigrmriication and validation than standard preemptive
RTOS, because shared resources in the code witdree. In Figure 1 an example of task run and
preemption in cooperative mode can be seen. Iretdample three tasks are defined. Taskl and Task2
are user defined not time critical programs and &k is a hard real time task, which is triggevgd
ISR clock. OS Idle task means, that there are skstan query and the onboard computer together
with OS can go to low power mode to save energy.

0S - Tasks Examp[e)

Tasks Execution Example)

Tasks ISR (clock) I

ISR task
Task 2 f
Task 1 —

05 idle

!
T
] 5 10 15 20 Time [s]

Figure 1: Cooperative task preemption example

The respective tasks in Figure 1 are as follows:

0: Task 1 is running.
Clock ISR fires. Task 2 is made “ready” via OBIAISR finished.
Task 1 continues to execute after ISR.
Task 1 voluntarily “yields” execution to the ka3 (which was made ready by ISR).
: Task 2 finishes execution and the stack unwithglsn to interrupted Task 1 stack
frame.
7: Task 1 finishes. System goes to idle state.
9: Clock ISR fires. Task 2 is made “ready”. ISRighes.
10: Since no other task is executing, Task 2 stargxecute immediately.
11: Task 2 is preempted by the “ISR task”. Thishis short time-critical task. The ISRs
are executing with their own stack; thus, TaskaZlsis not corrupted.
15: “ISR task” finishes and Task 2 continues tecee.
Even if Task 2 “yields” execution during its lifete, it is scheduled again - it is the
highest priority task ready.
17: Task 2 finishes. System goes to idle state.

Only a single stack is used for all priority tasksth higher priority tasks being higher in the
stack space. All Interrupt Service Routine (ISRkgaare executed with their own stack. The OS

consists of three main parts. The first part is ligagion User Interface (API), which enables user t
create, make ready, or yield a task, or allowstask to send event or data to another task. Thandec
part deals with the task management and incorpoeatask scheduler, which schedules a task flow in
OS. Finally, the third part manages system ISR{d)raal time tasks.

The tasks running in the OS can change statesdingoto the diagram shown in Figure 2.
Initially, a task is IDLE. OS call placed in theeuscode or in the ISR may change the task state to
RDY (ready), which will place the task to the OSaRg Queue. Next time, when the OS Scheduler is
executed, the task may be (according to its pyijppicked up from the Ready Queue and starts to
execute. At the user-specified points, the task Wi&tD execution to the scheduler. After that it is
PREEMPTED and will return to the same executiompat later time. When the task voluntarily
finishes its execution, its state is changed badbtE. Optionally a task may PEND on an event. At
the moment, an event is posted (by some othertaklR), the task is made ready for the execution.

The scheduler algorithm is a simple one-pass fanctvithout internal loop. The scheduler
function is called when a task yields executioth® scheduler, or after boot of the OS to run st f

task.
RDY
. EVENT
PENDING

WAIT FOR EVENT

Task - States J

[IDLE b

ISR/O5 APl

YIELD
PREEMPTED

RET

Figure 2: Task states

05 - Scheduler Algorithm]

os_sched() called

Ready Q empty?

/Save current highest ﬂcti\fE)

task priority -> H Tasks in the Ready Q are
\l/ sorted by priority, with
the highest priority task
Yes . . positioned on the top of
Disable interrupts the Q.

Enable interrupts [>’ * Priority of the first task
in the RDY Queue > H 7

Yes

(Dequeue first task in the)
Ready Q -> T

A Y\l/

I\ Enable interrupts)

Set current Jnghest active task
pnorlt\.- -= prie(T)

all the main fhr‘CtIO-r1 of the
scheduled task T

Restore highest active task)
riority H
" P ty
)

Figure 3: Scheduler algorithm

The first step of the scheduler function (Figurei8)to check whether there are any tasks
pending in the Ready Queue — the queue of the tagke RDY state. The tasks in the Ready Queue
are sorted by their priority, with the highest pity task being positioned on the top of the qudtie.
there is a task pending in the Ready Queue argfidgsty is higher than the priority of the currgnt
running task, the task is removed from the tophefReady Queue and its main function is called. The
interrupts are disabled during the process of satleduling to prevent the Ready Queue to be altered
during execution of the Interrupt Service Routine.

3 Simulink model

The simulation model is created using Matlab/Simiukenvironment. Created model of the OS
represents the close-loop of a repeatable tagk‘syicle. Input to the simulation is a list of taskach
with specified execution time, period of executigrgssibility of preemption between the task
execution and priority. Output of the simulati®a set of charts describing performance of the
elements in the model.

=
a
T
= 8
||_—_| o @ BN, N o E——N S, SN
Em L
L A =
T-'n'i:tg o w o @
o E & =
£ gy o
; -
i i
= = - b bl
il @
i B
‘E‘-ﬁ
= ‘ELB = E
¥ &
E‘ 8 5
-
S | \ £ S
" -1 |E uf . o5 JE
g Pl i 2 o T T
e 1 1 -
i i
zs 2 R H
2 T T :
& i 5 l l-“‘.l.[.l‘l? S] 0 S e ——
ki - 2 i T
2 & I8 < g |z
= & | e I
.:.'J = -:ll i
& i B | =5
i H .
= B
w]
= = =T
2 & R
& E- T E
= y
= N 3
g 5
a |2 2 |*
2 T
" L] |38
o
linTt-% 1
' u
i
(=]
A
o

L)
Restore original BxecTime
{justin ca=e that the goal has been
preempted and ExecTime reduced)

{ Failed Mizson

Goal Execution

S

=
T

Figure 4: Simulink model

Central element is the Ready Queue, storing the ta@sdy for the execution. The Ready Queue
is implemented as a priority queue with the higlpeigrity task being executed first. Since measyrin
the time between any two preemption points in tttea code would be time consuming, the time to
the next possible preemption point during task etten is simulated using constant interval of altot
task’s execution time. Once a scheduled task pdksasgh the execution a task may follow one of
the following two paths. If the task’s total exdounttime has passed, the task's insertion into the
Ready Queue is postponed for the task’s execugaiongh minus task’s total execution time. If thektas
has been executed only partially, it is immediatelyrned to the Ready Queue where the next highest
priority task is selected for execution.

The OS model is executed in the Simulink for thetdi amount of time units. Each time unit
represents 0.001 second — reasonable accuracyespbct to the selected CPU power and operational
frequency. The simulation runs for 20000 time un@fosen length of simulation allows to create
accurate enough picture of the internal OS behavibaur different charts are produced: average
waiting time in the Ready Queue, number of taskihéReady Queue waiting to be executed, total
number of scheduled tasks and the CPU utilizatsoih @an be seen in Figure 5.

Ready Q - Average wait time
T T T

tirne
o
(i}
I
|

0 500

1000

1500

time

Ready Q - Mumber of Tasks in Q

2000

2600

1000

Ready Q1 - Total number of sheduled Tasks

1500
time

2000

2500

4000 T

2000

1000

1500
time

2000

2500

Cpu utilization
02

01 =

1] 500 1000 1500 2000 2500
time

Figure 5: Simulation results

4 Emulator

Simulink model of the presented OS is used as lataoind out whether there are any control
logic problems in design of the operating systenawkler the kernel and all the tasks are
programmed in ANSI C. For proper functionality tegtof this code Simulink environment is not
suitable. For this purpose, an emulator in C pnogning language which runs under Linux or Mac
OS was developed. This emulator uses TCP/IP conwation to display debug messages. It allows to
emulate peripherals and drivers together with beagport package (BSP) and also to run unit tests
on the final OS code.

5 Conclusion

In this paper the complete control logic of coofigeamultitasking operating system developed
for the skCube mission was described. Cooperativdemwas selected because of its simplicity,
which will make testing and fail proofing easienrResting purposes there were two developer tools
made. The first tool is the Simulink based modehef OS kernel, which allows the task control logic
simulation. In this model a developer can teststtteeduling algorithm and its impact on the opegatin
system. The second tool is a text based emulatachvwvorks with exactly same program code which

will be used in the skCube onboard computer. THmnva faster software development, because a
developer can work and test their code without wagykardware of the onboard computer.

The Simulink simulations and the text output of &émeulator shows that the presented operating
system works reliable and hence it is suitableherskCube mission.

The source code of OS and all tasks meets the MISR®04 [3] standard for safety critical
systems. Partially the standards ED-12B/DO-178Bofdroard aerospace systems and also SAE ARP
4761 (FMEA and FTA analysis) to increase reliapibf the operating system and the bootloader are
fulfilled.

References

[1] SOSA available online:http://www.sosa.sk2014.

[2] S. Petrik, J. SlacksskCube software architectur&OSA internal report, Bratislava, Slovakia,
2014.

[3] Motor Industry Software Reliability Association (BIRA), MISRA=C: 2004,Guidelines for the
use of the C language in critical systep@ctober, 2004.

[4] JPL TeamJPL Institutional Coding Standard for the C Prognaimng LanguageJPL ,California
Institute of Technology, California, 2009.

[5] A.Slavinskis, U.Kvell, E.Kullu, I.Sunter, H.Kuust8,Latt, K.Voormansik, M. Noormajigh spin
rate magnetic controller for nanosatellitescta Astronautica, February-March, 2014

[6] L. Dudas, Automated and remote controlled ground stationMafsat-1, the first Hungarian
satellite Radioelektronika 2014 International ConferencgrilA2014

[7] Czechtech sat tearfizech Technical University in Prague Picosateltiteject,available online:
http://www.czechtechsat.c2014

[8] SOSA skCube tearkjrst Slovak Satelliteavailable onlinehttp://www.druzica.sk 2014.

Acknowledgement
This work has been supported by the Slovak Graen&g VEGA, grant No.1/0276/14.

Juraj Slagka, FEI, Slovak University of Technology
juraj.slacka@stuba.sk

Slavomir Petrik, Slovak Organization for Space witigs (SOSA)
Slavo653@gmail.com

Miroslav Halas, FEI, Slovak University of Technaojog
miroslav.halas@stuba.sk

