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Abstract 

Among many methods of power converters analyses - as classical analytic ones, Laplace 
transform or Fourier analyses – the most suitable for both dynamical- and steady state 
operation is transient analysis uses dynamic state space modelling or Z-transform method. 
Impulse switching functions (ISF) is one of the fastest methods for dynamic system solving. 
Because of strongly non-harmonic output quantities of power converters systems the power 
series of time pulses it deals with. Simulation results using MATLAB environment show 
possible consideration of impulse switching functions for equivalent scheme of the single 
phase voltage inverter system with resistive – inductive load. 

1 Introduction 

There are many methods of power converters analyses. Classical analytic methods, Laplace 
transform or Fourier analysis is suitable mainly for steady state operation [1], [2]. Transient analysis 
uses dynamic state space modeling or Z-transform method. One of the fastest methods is with uses 
impulse switching functions (ISF). For power converters systems ISF are strongly non-harmonic. Then 
it deals with power series of time pulses. Fig. 1 shows possible impulse switching function of 
considered single phase voltage inverter system and equivalent scheme of this system with resistive – 
inductive load. 

 

Figure 1: Impulse switching function of single phase voltage inverter system 

2 Impulse switching function using Z-transform 

Using basic definition of Z-transform - and taking into account Z-images of constant- and alternating 
series [3] we can write 
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where U(z) is output voltage in z-plain and roots of polynomial of denominator are 
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placed on boundary of stability in unit circle [3], [4]. 

Applying inverse Z-transform for converter output phase voltages in Z-domain we can create impulse 
switching functions. For inverse Z-transform  ( ) { }nuzU ↔  one can use the residua theorem [4], [5] 
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where n = 0, 1, 2, …, N is number of poles. 

Then 

( ) { } ( ) ( )( )
n

N

i
i

zz
n z

zz

z
UzzuzU

i
∑

=
= −+

+−=↔
1 11

1
lim

   
.   (4) 

After adapting  
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Taking discrete state-space model for single-phase converter output current as state-variable 
considering 1st order load (resistive-inductive) 
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where 
44

, TT GF are fundamental and transition matrices of system parameters. 

Applying Z-transform and considering resistive-inductive load (the matrices have only one element) 
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where X(z) is image of founded state-variable (inductor current or capacitor voltage), and Y∞ (z)  is 
maximum of steady state value (R

U  or U, respectively). 

And after adaption and simplification 
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where 1, 1
4

0 == zFz T  are polynomial roots of denominator X (z). 

Applying inverse Z-transform  
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Finally we get discrete form of state variable (converter output state variable – inductor currents or 
capacitor voltages) 
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For calculation of function values is necessary to determine the 
44

, TT GF  function values which are 

the state-variable values in ¼ -instant of time period (i.e. they are state- and transition responses). 
These can be obtained e.g. by using recursive relation for one-pulse solution:  
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thus recursive relation 
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where ik=0 = I0 = 0. Solution in z-domain yields 
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where ∆∆ GF , are discrete impulse responses of state-variables gained by some of identification 
methods. The second fraction term is z-image of the partial sum of voltage impulses (1÷60) [3], since 

0; <⋅ − azr nan  is geometrical series, see next Fig. 2. 

  

Figure 2: To determination of
44

, TT GF  

After choosing 360/T=∆ , k will be the in the range of 0÷59, thus )60(
4

yFT = , and 
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1 TT GF −= . 

Supposing time constant of the load equal to T/2 and  
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those values of 
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because of ∆= Fq , and 
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Now, one can calculate state-variable 



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T
nx  for any n, Fig. 3.  

It is also possible to change the step of series e.g. for step equal 2T , by determining of 
2

TF  and 
2

TG  
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and regarding to 
2

TG : 
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It is also possible to change the step of series e.g. for step equal 2T , by determining of 
2

TF  and 
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and regarding to 
2

TG : 
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Figure 3: Discrete response sequence of state-variable 
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So, then one can calculate 
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Where  
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The steady state value of ‘periodical’ sequence 
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so x(0) = X0 = .5153321.0 ∞− X  

Settings this value into { }nx  or { } K=+1nx  we get 
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Based on zero order hold function [3] and total mathematical induction one finally yields 
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where íntegeŕ  means integer function, T is time period and k∆ is discretizing time. 
Derived relations for voltages can be used for state variable calculations in electrical engineering 
systems. 
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where �∆ a �∆ are discrete impulse responses of state-variables (see above). 

3 Impulse switching function used for three-phase power converter systems 
 

Similar method is possible to use for three-phase system. As a conclusion it can be shown the use 
ISFs for applying for three-phase α,β-system [6] 
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Final relation for discrete form of state variable /converter output state variable – inductor 
currents or capacitor voltages will be 
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where � � 0, 1, 2, . . ∞; �� �+ , �� �+  are fundamental and transition matrices (in general) of system 

parameters and &' is exciting function value (� :+ 	<=	�, respectively). 

 

Figure 4: State variable response under sine PWM supply [6] 
Legend: red – impulse switching function, blue – transient response, green – steady state waveform, 

pink –switching pulses generated by inverter 

 



As an example, transient- and steady-state waveforms of state variable under sine PWM 
supply with minimum number of switching states (12-pulse switching voltage function) are shown in 
figure. 
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