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ABSTRACT
Polynomial Toolbox is a new MATLAB toolbox for systems, signals and control
analysis and design using polynomial methods. See www.polyx.cz for more
details. This paper demonstrates on several examples how the Polynomial
Toolbox solves various robust control problems for plants with parametric
uncertainties.

INTRODUCTION
Modern control theory addresses various problems involving uncertainty. In a large
class of practical design problems, the uncertainty can be traced down to
particular coefficients of the plant transfer matrix. It usually originates from various
physical parameters whose values are specified only within given bounds. An ideal
solution of these problems is to find a robust controller – a simple, fixed and off-
line designed controller that nevertheless guarantees desired behavior and/or
stability for all expected values of the uncertain parameters.
The Polynomial Toolbox offers several simple tools that are useful for robust
control analysis and design for the systems with parametric uncertainties. Some of
them are briefly introduced in this paper. The underlying methods as well as other
solutions that can also be built from the Polynomial Toolbox macros are described
in Barmish (1996), Bhattacharyya, Chapellat and Keel (1995) and other textbooks.

SINGLE PARAMETER UNCERTAINTY
Many systems of practical interest depend just on a single uncertain parameter. At
the time of design, the parameter is only known to fall within a given interval. Quite
often even more complex problems (with more complex uncertainty structure) can
be reduced to the single parameter case. Even though the uncertain parameter is
single, it may well appear in several coefficients of the transfer matrix at the same
time.

To analyze an uncertain polynomial ( ) ( )2 3 4( , ) 3 10 12 6p s q q s s q s s= + + + + + +  with

a single uncertain parameter Rq∈ , first check whether p s q( , ) is stable for 0q = .
Then find its left-sided and right-sided stability margins, that is, the smallest
negative minq  and the largest positive maxq  such that ( , )p s q  remains stable for any
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( )min max,q q q∈ . With the Polynomial Toolbox, this is an easy task: First express the

given polynomial as 0 1( , ) ( ) ( )p s q p s qp s= +  and enter the data

p0 = 3 + 10*s + 12*s^2 + 6*s^3 + s^4, p1 = s + s^3   

p0 =

     3 + 10s + 12s^2 + 6s^3 + s^4

p1 =

     s + s^3   

Then type
isstable(p0)

ans =

     1   

to verify nominal stability (that is, the case of 0q = ) and, finally, call

[qmin,qmax]=stabint(p0,p1)   

qmin =

   -5.6277

qmax =

   Inf   

to get the desired stability margins. This result discloses that ( , )p s q  is not merely

stable for 0q = , but also for all ( )-5.6277,q∈ ∞ . When -5.6277q = , the stability is

lost.

Combining the Polynomial Toolbox and Control System Toolbox, the result can be
visualized by plotting root-locus for a fictitious plant 1 0( ) ( )p s p s  under a fictitious

feedback gain q  ranging ( )-5.6277,∞ . Type

 rlocus(ss(p1,p0),qmin:.1:100)
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to demonstrate that, indeed, all the roots of p s q p s qp s( , ) ( ) ( )= +0 1  stay inside of
stability region for all q ∈ -5.6277,100a f.
INTERVAL POLYNOMIALS
Another important class of uncertain systems is those described by interval
polynomials where uncertainties in different coefficients are considered to be
independent. An interval polynomial looks like

0
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with ,i iq q− +    denoting the bounding interval for the i-th coefficient. In the

Polynomial Toolbox, the interval polynomial is described by the 'lower' and 'upper'
members
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In many applications the interval polynomials arise when an original uncertainty
structure is known but too complex (e.g., highly nonlinear) to be tractable yet it can
be overbounded by simple interval once an independent uncertainty structure is
imposed.
Checking robust stability is easy for interval polynomials of continuous-time nature:
such an interval polynomial is robustly if and only if just certain four 'extreme'
polynomials (called Kharitonov) are stable. For example, consider the continuous-
time interval polynomial (Barmish, 1996)

[ ] [ ] [ ] [ ] [ ]
[ ]

2 3 4

5 6

( , ) 0.45,0.55 1.95,2.05 2.95,3.05 5.95,6.05 3.95,4.05

3.95,4.05

p s q s s s s

s s

= + + + +

+ +

To test it using the Polynomial Toolbox, we first enter it via two 'lumped'
polynomials

pminus = 0.45+1.95*s+2.95*s^2+5.95*s^3+3.95*s^4+3.95*s^5+s^6;

pplus = 0.55+2.05*s+3.05*s^2+6.05*s^3+4.05*s^4+4.05*s^5+s^6;

Then the robust stability is checked simply by typing
[stability]=kharit(pminus,pplus)   

stability =

     1

In fact, the macro verifies that all the four polynomials are stable and we conclude
that the interval polynomial is robustly stable.
On the other hand, no Kharitonov-like results are available for discrete-time
polynomials (of degree 4 and higher). Yet the following graphics method can be
applied. Consider the interval polynomial

[ ] [ ] [ ] [ ]2 3 4( , ) 10,20 20,30 128,138 260,270 168p z q z z z z= + + + + .

To test its robust stability, we write

0 1 1 2 2 3 3 4 4( , ) ( ) ( ) ( ) ( ) ( )p z q p z q p z q p z q p z q p z= + + + + ,
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where 2 3 4
0( ) 10 20 128 260 168p z z z z z= + + + + , 1( ) 1p z = , 2( )p z z= , 2

3( )p z z=  and
3

4( )p z z= . Such an expression is called polytopic. It enables us to describe each
interval coefficient by a separate uncertain parameter iq  ranging 0 10, . To analyze
the interval polynomial, we enter the data

p0 = 10 + 20*z + 128*z^2 + 260*z^3 + 168*z^4;

p1=1,p2=z,p3=z^2,p4=z^3, Qbounds=[1 10;1 10;1 10;1 10];

and check that 0p is stable

isstable(p0)   

ans =

     1   

Then we plot the sets (called value sets) ( , )p c q  for boundsq Q∈  and the generalized
frequency c sweeping around unit circle. To better recognize what is happening in
the neighborhood of the critical point 0, we only show here a zoomed figure for
generalized frequencies ejω  in the critical range ω π π∈ 0 6 1. , .4a f:

ptopplot(p0,p1,p2,p3,p4,Qbounds,exp(j*(0.3:0.001:0.7)*2*pi))

We can see that the point zero is excluded from all the octagons (0 ∉ p c q( , ) for all
� on the unit circle) and we can conclude that the discrete-time interval polynomial
is robustly stable.

POLYTOPES OF POLYNOMIALS
More general class of systems is described by uncertain polynomials that linearly
depend on several parameters, but each parameter may occur simultaneously in
several coefficients. Such an uncertain polynomial may look like

1
( , ) ( )

n i
ii

p s q a q s
=

= ∑
where each coefficient a qiaf is an affine linear function of q. Uncertain polynomials
with this uncertainty structure form polytopes in the space of polynomials. Similarly
to the single parameter case, they can always be expressed as
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0 1 1 2 2( , ) ( ) ( ) ( ) ( )n np s q p s q p s q p s q p s= + + + +� .

In the Polynomial Toolbox a polytope of polynomials having n parameters is
always described by the n+1a f polynomials p s p s p sn0 1( ), ( ), , ( )�  along with n

parameter bounding intervals q q q qn n1 1
− + − +, , , ,� . The affine linear uncertainty

structure is quite important as it is preserved under feedback interconnection.
Unfortunately, there is not enough space here to present a full example. However,
a special case of polytopic uncertainty was treated in the last example, where an
interval polynomial was expressed and analyzed in this setting.
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