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Abstract

Physical systems represented in terms of linear time-invariant multivariable models are en-
dowed with certain structure which is important for the analysis and synthesis of control
strategies. Structural elements of the two widely used representations |autoregressive rep-
resentation with external variables on equal footing (in the frequency domain) and state-space
representation with static constraints (in the time domain)| are computed using the tools
of numerical linear algebra of constant matrices.
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1 Introduction

The problems described in this paper are of speci�c interest in linear system theory but are
analyzed using tools that are more numerical linear algebra oriented than the mainstream of
systems and control literature. A basic problem is the study of the equation

P (�)w(t) = 0 (1)

where P (�) is a singular1 polynomial matrix with constant coe�cients. The operator � may
either be the di�erential operator d

dt
or the shift operator z and w(t) is then a vector-valued

time function or time series, respectively.
Structural elements of polynomial matrices { which are a special case of rational matrices {

were described in the algebraic theory, e.g. by McMillan (1952) and Forney, Jr. (1975), based on
partial results in earlier literature, e.g. Smith (1873), Kronecker (1890), Gantmacher (1953). In
the most general case of a singular polynomial matrix P (�), the structural elements consist of
zeros, poles (at in�nity), and the left and right null spaces. These structural elements are known
to play a fundamental role in practical problems of coding theory (Forney, Jr., 1975), network
theory (McMillan, 1952), control theory (Wonham, 1979) and other related �elds (Kailath, 1980).
A nonsingular2 polynomial matrix P (�) has no left and right null space but the zeros appear
in a geometric structure which plays a fundamental role in some applications, e.g. Kra�er and
Kwakernaak (1997).

System-theoretic interpretations and numerical problems subject to this paper are related
to general rational matrices with the �eld of real numbers R as coe�cient space, implying the
occurence of complex numbers C in our de�nitions of poles and zeros. Consequently, we prefer

ySupported by the Grant Agency of the Czech Republic under contract No. 102/99/D033 and by the Technical
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1A polynomial matrix is singular if it is not square and invertible.
2A polynomial matrix P (�) is nonsingular if detP (�) 6� 0, i.e. P (�) will be nonsingular for almost all values

of �, except those that make detP (�) = 0.



to embed R in C . By C [�] we denote the ring of polynomials in � over C and by C ((��1 )) the
�eld of rational functions in � over C . The ring of rational functions bounded at � =1 is called
proper and denoted C [[��1 ]], its subset with vanishing constant term is called strictly proper

and denoted ��1C [[��1 ]]. An invertible matrix in C
n�n [�] is called unimodular whereas an

invertible matrix of C n�n [[��1]] is called biproper. It is easy to see that matrices in C
n�n [�] are

unimodular if and only if their determinant is a constant, di�erent from zero (Gantmacher, 1953).
Two matrices R1; R2 2 C

m�n((��1)) are said to be equivalent when there exist unimodular
matrices M 2 C

m�m [�] and N 2 C
n�n [�], respectively, such that MR1N = R2. Indeed, this

is an equivalence relation since the inverse and the product of unimodular matrices are again
unimodular.

In numerical analysis this led, among other things, to the problem of computing the eigen-
structure of a polynomial matrix (Van Dooren and Dewilde, 1983). In system theory one is
rather interested in algebraic properties like stability, state-space descriptions, etc. (Rosenbrock,
1970) and their physical applications e.g. optimal and robust control, �ltering, etc. (Kwakernaak
and Sivan, 1972), (Wonham, 1979), (Stoorvogel, 1992). Meanwhile more di�erential-equation-
oriented approaches were studied in linear system theory by Blomberg and Ylinen (1983) and
Willems (1995). In that area of interest a system is looked at as a set of trajectories yielding
an algebraic description of their generator (Blomberg and Ylinen, 1983). A more general case
where the inputs and outputs are considered on equal footing has been pioneered by Willems;
see Willems (1995) for an informal sketch and references. For a general system of di�erential
equations viewed as a generator of a set of trajectories for external variables on equal footing, a
complete list of (externally) equivalent operations is given in Schumacher (1988).

2 Column reduced polynomial matrices, state feedbacks, and

maximally unobservable subspaces

The notion of column reducedness is widely used in system theory. The basic result is the
following (Wonham, 1979):

Theorem 2.1 (column reduced polynomial matrix) Let P 2 C
p�m [�]. Then there exists

a unimodular matrix U 2 C
m�m [�] such that PU =

�
Pr 0

�
with Pr 2 C

p�r [�] a full column

rank, column reduced matrix with column degrees k1; k2; : : : ; kr decreasingly ordered. The column

degrees are uniquely determined, although U is not, and are called the column indices of P .

Corollary 2.2 (Wiener-Hopf left factorizations) Let P 2 C
p�m [�] be the polynomial ma-

trix in theorem 2.1. Then there exists a left factorization in the form P = BDU with U 2

C
m�m [�] unimodular, B 2 C

p�p [[��1]] biproper, and

D =

�
� 0
0 0

�
; � = diag(�k1 ; : : : ; �kr): (2)

Proof: After a unimodular transformation of P into a column reduced Pr, we may write Pr as

Pr(�) = Prhc�(�) + Prlc (�)

 T(�) = block diag
��

�k1�1 : : : � 1
�
; : : : ;

�
�kr�1 : : : � 1

�� (3)

or
�
Prhc + Prlc  (�)�

�1(�)
�
�(�) where the nonsingularity of Prhc and the strict properness of

 (�)��1(�) ensures that Prhc+Prlc  (�)�
�1(�) is bounded at in�nity, together with its inverse.

If P is singular then the left factorization of P is obviously not unique. In the nonsingular
case the factorization is also not unique but the freedom of nonuniqueness is smaller.

Remark 2.3 (non-unique factorizations, unique factorization indices) A left factoriza-

tion P = B�U of a nonsingular P 2 C
m�m [�] is nonunique since P = (BV )�(��1V �1�U)



describes another left factorization, generated by an element of a multiplicative group of uni-

moular matrices V 2 C
m�m [�] whose entries satisfy

uij = 0 if ki > kj
deg uij � kj � ki if ki � kj

A similar result may be obtained in the singular case to yield the uniqueness of the factorization

indexes for any P 2 C
p�m [�].

Remark 2.4 (row reducedness/degrees/indices, right factorizations) Row reducedness,

row degrees, row indices, Wiener-Hopf right factorizations, and the right factorization indices

are de�ned analogously by considering the transpose of P and taking the transpose of the resulting

quantities.

In order to introduce conventional realization theory, let us consider a system of di�erential
equations in the form

Pr(�)�(t) = u(t) (4)

where Pr 2 C
m�m [�] is nonsingular and column reduced with nonzero column degrees

k1 � k2 � � � � � km:

We may think of � as the partial state of a physical system whose output dynamics is described
by

y(t) = Qr(�)�(t); (5)

Qr 2 C
p�m [�] having its column degrees strictly less than the corresponding column degrees

of Pr in order to have an eligible transfer function for the physical system, that is, QrP
�1
r 2

��1C p�m [[��1]].
Having written Pr in the form (3), we may arrange (4) in the form

�(�)�(t) = �P�1
rhcPrlc (�)�(t) + P�1

rhcu(t) (6)

in order to allow (4) a simple closed-loop interpretation: the closed loop consists of a dynamic
gain P�1

rhcPrlc (�), wrapped in a feedback around a system whose transfer function, input, and
output are described by ��1(�), �(�)�(t), and �(t), respectively, the closed-loop input and
output being described by P�1

rhcu(t) and �(t).
Apparently, ��1 describes the integrators required to set up a state-space realization of the

loop. The integrators appear inm chains, each containing ki integrators. In accord with Kelvin's
method (Thomson, 1876), the state x of the realization may be chosen as

x(t) =  (�)�(t); dimx =
mX
i=1

ki

and the realization may be interpreted in terms of a state-space realization of

�(t) =  (�)��1(�)v(t) (7)

by wrapping the realization of (7) in a state feedback and applying a nonsingular transformation
to the input coordinates of thus obtained loop. Indeed, in transfer function terms, application
of

v(t) = P�1
rhcu(t)� P�1

rhcPrlcx(t) (8)

to (7) recovers (4) while, in state space terms, application of (8) to a minimal state-space
realization of (7) yields a minimal state-space realization of (4).



Perhaps the simplest minimal realization of (7) is described by (A;B;C) in the celebrated
Brunovsky canonical form (Brunovsky, 1970):

A = block diag

8>>>><
>>>>:

2
66664

0

1
. . .
. . .

. . .

1 0

3
77775; ki � ki; i = 1; : : : ;m

9>>>>=
>>>>;

BT = block diag
��

1 0 � � � 0
�
; 1� ki; i = 1; : : : ;m

	
C = In; n =

Pm
i=1 ki

(9)

as may be checked by direct calculation.

Remark 2.5 (state feedback) Note that state feedback: does not alter Qr(�), the numerator

polynomial matrix of a QrP
�1
r 2 ��1C p�m [[��1]]; does not alter Prhc, the highest column degree

coe�cient matrix of Pr(�); can completely change Prlc, the lower column degree coe�cient matrix

of Pr(�).

Remark 2.6 (input space transformation) Note that the highest column degree coe�cient

matrix Prhc may be scaled to an arbitrary (equally dimensioned) nonsingular matrix by a non-
singular transformation of the input space.

De�nition 2.7 (regular state feedback) Given a state-space realization (A;B;C), speci�ed
by a triple of constant matrices A, B, C such that

�x(t) = Ax(t) +Bu(t)
y(t) = Cx(t);

a regular state feedback around (A;B;C) is de�ned by

v(t) = Gu(t) +Kx(t)

with G and K constant matrices, G nonsingular.

Corollary 2.8 (feedback equivalence transformations) The set of transformations de�ned

on (A;B;C) by regular state feedback and similarity transformation de�nes an equivalence rela-

tion on (A;B;C), the Brunovsky form (9) and the set of column degrees k1, k2, : : : , km being

a canonical representative of an equivalence class and the set of invariants within the class,

respectively.

The fact that the above transformations do not a�ect controllability can be proved similarly
to the scalar case: their application preserves the possibility to set up the initial states of the
integrator chains in the Brunovsky form (9). For observability, recall that a state of (A;B;C)
is unobservable if the state cannot be uniquely distinguished from the system output.

Let us use B and C to denote the range space of the input matrix B and the null space of the
output matrix C, respectively. For zero inputs, the state is not uniquely distinguishable from
the system output if C contains a nontrivial A-invariant subspace. This characterization may be
extended to the case with unknown inputs, where the indistinguishability arises if C contains a
nontrivial (A;B)-invariant subspace. A subspace of states, say V, is A-invariant if AV � V; it is
(A;B)-invariant if AV � B+V. A system-theoretic interpretation of an (A;B)-invariant subspace
contained in C is that for any given x0 2 V, there exists an input u0 such that Ax0+Bu0 remains
in V and hence in C. The following result relates A-invariant and (A;B)-invariant subspaces to
state feedback Basile and Marro (1992):

Lemma 2.9 (state-feedback connection between invariant subspaces) V is an (A;B)-
invariant subspace if and only if there exist a (nonunique) state-feedback gain K such that V is

(A�BK)-invariant.



The above lemma shows that the choice of an input u0 such that Ax0 +Bu0 remains in V and
hence in C may be automated by a convenient choice of state feedback.

Using linearity, the sum of two (A;B)-invariant subspaces is again an (A;B)-invariant sub-
space. Therefore there must be a unique maximal (A;B)-invariant subspace in C, which we shall
denote by V�(A;B; C). Since a subspace is maximal if there is no other subspace that strictly
includes it, by lemma 2.9 , V�(A;B; C) is also the maximal unobservable subspace under state
feedback.

De�nition 2.10 (strongly observable state-space realization) An observable state-space
realization (A;B;C) is strongly observable if the realization is observable under feedback equiv-

alence transformations.

Corollary 2.11 (strongly observable state-space realization) If (A;B;C) is strongly ob-

servable, then V�(A;B; C) = 0.

Lemma 2.12 (strongly observable state-space realization) Let (A;B;C) be a strongly ob-
servable state-space realization of degree n. Then

rank

�
��A B

�C 0

�
= n+ rankB (10)

for all � 2 C .

Proof: (contradiction, continuous time) If �0 is a zero frequency, then (10) will lose rank at
� = �0, and there will exist a pair of constant vectors x0 and u0 such that

�
�0 �A B

�C 0

� �
x0
u0

�
= 0

But this means that if we have an input u(t) = u0e
�0t, t � 0, then there exists an initial state

x0 such that the response is y(t) � 0, t > 0, and hence (A;B;C) cannot be strongly observable.

De�nition 2.13 (AR and DVR of a system) Suppose � is a system de�ned as the set of

trajectories of its external signals w 2 Hm(R; Cm).

1. Let P 2 C
p�m [�] have full row rank as a polynomial matrix. If

P (�)w(t) = 0 (11)

then (11) is called AR (autoregressive representation) of �.

2. Let A, B, C, and D be given constant matrices. If there exist a pair of variable x and v

such that

�x(t) = Ax(t) +Bv(t)
w(t) = Cx(t) +Dv(t);

(12)

then (12) is called DVR (driving variable representation) of �. Moreover, if dimx and

dim v are minimal with respect to every possible DVR of �, then (12) is minimal.

Corollary 2.14 (minimal DVR of a system { non-uniqueness) Any two minimal DVRs

of a system may be transformed to one another by feedback equivalence transformations.

Corollary 2.15 (dimension of the driving variable) If (12) describes a minimal DVR, then
D has full column rank.



3 Computational issues and the main results

The de�nitions we used in the frequency-domain part of section 2 rely heavily on unimodular
transformations and related canonical forms. These transformations and forms can be con-
structed by elementary operations (Gantmacher, 1953). Elementary operations on the rows of
a polynomial matrix P (�) are:

1. multiplication of a row by a constant c 6= 0,

2. addition to any row of any other row multiplied by any arbitrary scalar polynomial p(�),

3. interchange of any two rows.

Elementary operations on columns are de�ned analogously. From a numerical viewpoint, meth-
ods based on computation of elementary operations are not very appealing:

1. Euclidean type algorithms are numerically unstable since pivoting techniques are precluded
while some of the pivot coe�cients may be very small since the choice of a pivot depends
only on its degree,

2. methods using minors are very time consuming since the computing time grows as a
factorial of the normal rank of the polynomial matrix.

In the following sections we sketch an algorithmic approach avoiding unimodular transforma-
tions and their inherent numerical instability. The idea is to use system-theoretic interpretations
to translate problems into state space where e�cient numerical methods are available through
the linear algebra of constant matrices.

The main result is an algorithm for computing a column-reduced basis of the right null space
of a full-row-rank polynomial matrix. The algorithm relies on auxiliary algorithms that do not
require the computation of elementary polynomial operations; they rely on invariant subspace
methods with orthonormal bases, computationally based on Gram-Schmidt orthonormalization,
Householder transformations, and the singular value decomposition. The auxiliary algorithms
are elaborated in section 4 and section 5.

Algorithm 3.1 (minimal basis for the right null space of a polynomial matrix) Let P

2 C
p�m [�] have full row rank p as a polynomial matrix. Apply:

1. algorithm 4.1 to obtain a state-space realization (A;B;C;D) in the form of a minimal
DVR of P (�)w(t) = 0.

2. algorithm 5.1 to orthogonally transform (A;B;C;D) to a controllability Hessenberg form

in order to remove the uncontrollable subsystem, that is,

(A;B;C;D) �! (A;B;C;D)contr

3. algorithm 5.2 to represent the controllable pair (A;B) in terms of a right polynomial MFD

Qr(�)P
�1
r (�) = (�I �A)�1B

where the polynomial matrices Qr(�) and Pr(�) are right coprime and column reduced by

construction.

Then a minimal basis for the right null space of P (�) is described in a polynomial matrix R 2

C
m�(m�p) [�],

R(�) = CQr(�) +DPr(�):

That is, R(�) is column reduced and rankR(�) = m� p for all � 2 C .



4 Successive simpli�cation of driving variable representations

in the realization of systems in state space

A polynomial matrix P 2 C
p�m [�] of degree degP = l may be de�ned in terms of a matrix

polynomial

P (�) = Pl�
l + Pl�1�

l�1 + � � �+ P1�+ P0

and manipulated as an array of coe�cient matrices Pi 2 C
p�m , i = 0; 1, : : : , l. The follow-

ing algorithm is based on external equivalence of linear systems in the form (1). The result
is a minimal DVR of (1), related to any other minimal DVR of (1) by feedback equivalence
transformations.

Algorithm 4.1 (state-space realization) Let P 2 C
p�m [�] be a full-row-rank polynomial

matrix without zero columns.

1. De�ne A 2 C
m(l+1)�m(l+1) , B 2 C

m(l+1)�p , C 2 C
p�m(l+1) , H 2 C

m�m(l+1) , J 2 C
p�p

such that

2
4 A B

C 0
H J

3
5 :=

2
666666666664

0 � � � � � � � � � 0 I

I
. . .

... 0

0
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...

0 � � � 0 I 0 0

Pl � � � � � � P1 P0 0

0 � � � � � � 0 I 0

3
777777777775

:

2. Apply algorithm 4.2 to (A;B;C;H; J), the result being (A11; B12;H1; J2). De�ne new

(A;B;C;H; J) such that

2
4 A B

C 0
H J

3
5 :=

2
4 AT

11 HT
1

BT
12 0
0 �I

3
5 : (13)

3. Apply algorithm 4.2 to the current (A;B;C;H; J), the result being (A11; B12;H1; J2). De-
�ne (A;B;C;D; J) such that

2
4 A B

C D

0 J

3
5 :=

2
4 AT

11 HT
1

BT
12 JT2
0 I

3
5 : (14)

4. Apply the orthogonal matrix Tv =
�
T1 T2

�
|speci�ed by (19) in algorithm 4.2| to

obtain

2
4 A B1 B2

C 0 �I

0 T1 T2

3
5 :=

2
4 A

T
11 HT

1

BT
12 JT2
0 I

3
5� I 0 0

0 T1 T2

�
:

Then P (�)w(t) = 0 admits a minimal DVR in the form

�x(t) = (A+B2C)x(t) +B1v(t)

w(t) = T2Cx(t) + T1v(t):
(15)



Throughout algorithm 4.1 the dimensions of the externally equivalent realizations are succes-
sively de
ated using lemma 2.12; a system matrix with full column rank for all � 2 C guarantees
existence of a unimodular transformation which validates the de
ation (the existence is enough;
the actual unimodular matrix is not needed for computation purposes). Actually, the de
ation
is subject to step 3 and step 4 of algorithm 4.2, the full-column-rank system matrix being de�ned
by (A22; B21; C2; 0).

Algorithm 4.2 (tool in algorithm 4.1) Let (A;B;C;H; J) be a DVR with static constraints,

the representation being described in the form

�x(t) = Ax(t) +Bv(t)

0 = Cx(t)

w(t) = Hx(t) + Jv(t):

(16)

1. Find an orthonormal basis (�1, : : : , �k) for V
�(A;B; C).

2. Wrap a state-feedback v �! v +Kx around (16) such that a state-space realization

�x(t) = (A+BK)x(t) +Bv(t)

0 = Cx(t)

w(t) = (H + JK)x(t) + Jv(t)

(17)

is obtained with a simple invariant subspace V(A+BK) = V�(A;B; C).

3. Find (�k+1, : : : , �n), the orthonormal complement to the basis of V�(A;B; C), and apply

the orthogonal matrix

T =
�
�1 : : : �k �k+1 : : : �n

�
as a similarity transformation matrix in (17). In the new coordinates, (17) appears in the

Kalman form

�

�
x1(t)
x2(t)

�
=

�
A11 A12

0 A22

� �
x1(t)
x2(t)

�
+

�
B1

B2

�
v(t)

0 =
�

0 C2

� � x1(t)
x2(t)

�

w(t) =
�
H1 H2

�� x1(t)
x2(t)

�
+ Jv(t)

(18)

where A11 2 C
k�k , 0 < k � dimx.

4. Orthogonally transform v in (18) such that |in the new coordinates| B2 is in a column-

compressed form: if Tv is the relevant orthogonal transformation matrix, then�
B11 B12

B21 0

�
:=

�
B1

B2

�
Tv (19)

with B21 full column rank.

Then (16) is externally equivalent to a not necessarily minimal DVR in the form

�x(t) = A11x(t) +B12v(t)

w(t) = H1x(t) + J2v(t):
(20)

In (16){(20), x and v denote di�erent quantities whose interpretation remains intact through-
out the algorithm; dimx remains constant while dimv in (18) is reduced to that in (20). In
(20), dimx and dim v need not be the minimal dimensions amongst all externally equivalent
state-space realizations of (16); dimx is minimal following the second application of algorithm
4.2 in algorithm 4.1.



5 Finalization

The �nal step in the computation of a minimal basis is a successive backsolve of a set of linear
equations in constant matrices. A similarity orthogonal transformation of a state-space realiza-
tion (A;B;C;D) acts on the full-row-rank blocks in a controllability Hessenberg form to create
upper-triangular blocks for the backsolve. The transformations rely on a product of Householder
matrices.

Algorithm 5.1 (controllability Hessenberg form) Let (A;B;C;D) be a state-space real-

ization in the ussual form.

1. Change coordinates |using an orthogonal similarity transformation| such that in the

new coordinates, (A;B;C;D) is described by2
6666666664

A11 � � � � � � A1;� A1;�+1 B1

A21
. . . A2;� A2;�+1 0

0
. . .

. . .
...

...
...

...
. . . A�;��1 A�� A�;�+1 0

0 � � � 0 0 A�+1;�+1 0

C1 � � � � � � C� C�+1 D

3
7777777775

(21)

with Aij 2 C
ki�kj for i; j = 1; 2; � � � ; �. The integers ki are de�ned such that

k1 = rank B
k2 = rank Ai+1;i

...

k� = rank A�;��1:

(22)

The submatrices B1 and Ai+1;i, i = 1; 2; � � � ; �� 1, are in the row echelon form2
664
x11 : : : x1r1 x1;r1+1 : : : x1r2 : : : x1;rq�1+1 : : : x1rq

x2;r1+1 : : : x2r2 : : : x2;rq�1+1 : : : x2rq
: : : : : :

xq;rq�1+1 : : : xqrq

3
775 (23)

where q = ki, the column indexes satisfy q � r1 > r2 > � � � > rq � 1, and the entries x11,

x2;r1+1, : : : , xqrq+1 are nonzero scalars.

2. Delete the rows and the columns that intersect at A�+1;�+1 and denote

n =

k�X
i=1

ki

3. Use orthogonal similarity transformation to change the coordinates such that the Ai+1;i's

are upper triangular, that is, like

Ai+1;i =

2
4 x x x

x x

x

3
5 (24)

where the nonzero elements are marked by x.

The result is a controllable state-space realization

(A;B;C;D)contr :=

2
66666664

A11 � � � � � � A1;� B1

A21
. . . A2;� 0

0
. . .

. . .
...

...
...

. . . A�;��1 A�� 0

C1 � � � � � � C� D

3
77777775

(25)



Aij 2 C
ki�kj for i, j = 1; 2; : : : ; �, the integers ki satisfy (22), B1 is in the form (23), and the

Ai+1;i's are in the form described by (24).

Algorithm 5.2 (left-to-right conversion) Let (A;B) be a controllable pair in the controlla-

bility Hessenberg form (25), featuring the upper-triangular A21; : : : ; A�;��1 and the row echelon

B1.

1. De�ne L 2 C
n�(m+n�p) [�] such that

�
L0 L1(�) : : : L��1(�) L�(�)

�
=

2
6664
�B1 �I �A11 � � � �A1;��1 �A1;�

0 �A21 �A2;��1 �A2;�
...

. . .
. . .

...
0 � � � 0 �A�;��1 �I �A�;�

3
7775

and a partitioned R 2 C
(m+n�p)�(m�p) [�] such that

R(�) =

2
66664

R0(�)
R1(�)
� � �

R��1(�)
R�

3
77775 (26)

with R0(�), : : : , R��1(�) speci�ed by

Ri(�) =

�
0 I 0

Xi(�) 0 0

�
; (27)

Xi 2 C
ki+1�ki+1 [�] being unknown polynomial matrices, to be determined in the sequel, and

such that

R� :=
�
Ik� 0

�
:

2. Successively backsolve L(�)R(�) = 0 for X��1(�), : : : , X1(�), and X0(�) speci�ed by (27).

Proceed from X��1(�), obtained as the solution to

�
0 : : : 0 �A�;��1 �I �A�;�

�
R(�) = 0:

3. Partition R(�) into Pr 2 C
(m�p)�(m�p) [�] and Qr 2 C

n�(m�p) [�],

�
Pr
Qr

�
:=

2
666664

R0(�)

R1(�)
� � �

R��1(�)
R�

3
777775
:

Then Qr(�)P
�1
r (�) := (�I�A)�1B, the polynomial matrices Qr(�) and Pr(�) are right coprime

and column reduced by construction.

6 Conclusions

The algorithms avoid computation of elementary polynomial operations by applying an innova-
tive technique for state-space realization, cf. Wolovich (1971). The technique does not require
row-reduced forms of polynomial matrices. Minimal externally equivalent realizations are ob-
tained in a successive conversion of state-space realizations in the form of a driving variable
representation. The conversion is guided by invariant subspace methods with orthonormal



bases. Computationally, the algorithms rely on numerical methods including Gram-Schmidt
orthonormalization, Householder transformations, and the singular value decomposition.

The algorithms have been implemented in MATLAB, partly based on the comercial software
Grace et al. (1990) and the appendix software to Basile and Marro (1992). The implementation
is subject to improvements aiming at algorithmization whose numerically backward stability is
subject to formal proofs. For comparison to conventional algorithms with unimodular trans-
formations and related canonical forms, the conventional algorithm for state-space realization
(Wolovich, 1971) requires generalization to system descriptions in the form (1). In the original,
input-output case concerning left MFDs, the algorithm requires transformation to a row reduced
polynomial matrix, multiplication by a unimodular matrix, modulo polynomial matrix division,
and constant matrix inversion.

The algorithms are useful in a computer aided design of control systems (CADCS) based
on polynomial matrices. They allow us to compute singular properties of a general polynomial
matrix, along with a minimal (externally) equivalent state-space realization of a system with
external variables on equal footing. The realization is in the form of a driving variable represen-
tation. The resulting connections are useful as alternative proofs and improve our understanding
of polynomial matrices in the context of control systems applications. Without customization,
the algorithms may be used for left-to-right and right-to-left conversion to a reduced form of a
polynomial MFD. Little customization is needed for a similar application retaining the uncon-
trollable dynamics of (1).
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