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Abstract

The overwiev of M-�les worked out for computing local parameters

of quartic splines interpolating function values, mean values or derivative

values is presented . Local representations used for computing function

values of such splines in arbitrary point and corresponding M-�les are

described. M-�les for computing local parameters and function values of

mean values smoothing splines and some shape (monotonicity, convexity)

preserving quartic smoothing splines complete the overwiev.

1 Notation

Splines have been recognized as usefull tool in interpolation and approximation
problems. We can �nd them to be implemented in widely used software products
for scienti�c computing and computer graphics ( Mathematica, Maple, Matlab).
The widely known collection of Fortran programs published in [1] enables the user
to work with PP-representation in case of cubic function values interpolating and
smoothing splines ( no mean or derivative values are explicitly mentioned at all).
Splines of all another degrees are handled here basically in B-spline basis ( but
they can be turned to PP basis for plotting and another purposes). This package
of programs was (with some inovations) used as the basis for Spline Toolbox in
MATLAB (de Boor, 1990-95, see [2]).
In applications the splines of degrees 1-6 are the most frequently used. Our idea
for several last years was to work out in details the proper local representations for
function, mean and derivative values interpolation and smoothing with quadratic
and quartic splines. They can be used then for corresponding formulation of con-
tinuity conditions, initial or boundary conditions - all in terms of local parameters
with known geometric meaning to the user. This article develops and extends the
overwiev given in [10]. The M-�les worked out for linear and quadratic splines in
1D and 2D are described in [15]. In this contribution we present the collection of
21 M-�les for quartic splines.

The notation used here corresponds with the notation used in the articles
cited; in M-�les the Matlab programming rules result in some di�erences ( e.g.



for notation in indexes etc.).
Let us have a vector of spline knots x = fxi; i = 0(1)n+ 1g ,

a = x0 < x1 < : : : < xn < xn+1 = b; with stepsizes hi = xi+1 � xi

and let d 2 f1; 2; 3; 4g. The quartic spline s4d(x) with the defect d on the knot
sequence x is a piecewise polynomial (PP) function with the properties:

1. s4d(x) is a fourth degree polynomial on every interval [xi; xi+1], i = 0(1)n ;

2. s4d 2 C4�d[x0; xn+1] (Continuity Condition { CC) .

In major part of this work quartic splines with defect one are treated (the
splines with defect two will be mentioned in sections dealing with quasilocal or
shape preserving splines ). For brevity we shall use notation s(x) = s41(x).

Let us have given values gi; i = 0(1)n and let xi < ti < xi+1 for i = 0(1)n
( or gi are given in xi = ti ; i = 0(1)n+ 1 - simple grid).
We say that the quartic spline s4d(x) solves the problem of

� function values interpolation (FVI) if s(ti) = gi ;

� mean values interpolation (MVI) if
R xi+1
xi

s(x)dx = higi ;

� derivative interpolation (DVI) if s0(ti) = gi .

We shall denote in the following
si = s(xi) the spline function values in knots ,
mi = s0(xi) the spline derivative values in knots,
Mi = s00(xi) the second derivative values in knots.

A quartic spline is not determined by interpolatory conditions uniquelly, some
free parameters (3 on simple grid, 4 on general grid) can be used (usually the
boundary conditions).

2 Quartic splines on simple (rectangular) grid

We shall follow �rstly the special case of FVI when the points of interpolation
coincide with spline knots .

2.1 Quartic splines on simple 1D grid

Problem:
Let us have given knots x = fxi; i = 0(1)n+1g and function values s = fsi; i =
0(1)n+ 1g. Find a quartic spline s41 interpolating function values s in knots x.

The needed local parameters m, M we can compute using M-�le s41dmM. For



computing spline local parameters on frequently used equidistant knotset x the
more simple M-�le lp1ds4e based on recurrences for the local parameters mi

only (see [6], p.64) can be used. Spline function value s(t) can be computed from
local parameters by M-�le s4gval.

Example: The FVI spline (Fig. 1) on simple grid can be computed using fol-
lowing sequence of function calls:

x=[0.1:0.1:2]; s=sin(log(x)).*sin(2*pi*x); plot(x,s,'o'); hold on;

[m,M]=s41dmm(x,s,[]);

xx=[0.1:0.01:2]; yy=zeros(size(xx));

for i=1:length(yy) yy(i)=s4gval(xx(i),x,s,m,M); end; plot(xx,yy);
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Figure 1: The solution of FVI problem (solid line) on simple grid (the circle)

2.2 Biquartic splines on simple grid

Problem:
Let us have given knots grid x � y with x = fxi; i = 0(1)n + 1g, y = fyj; j =
0(1)m+ 1g and function values S = fsij; i = 0(1)n+ 1; � = 0(1)m+ 1g. Find a
biquartic spline with defect one interpolating function values S in knots x� y.

In case of equidistant knots in vectors x, y we can use the M-�le lps42d for
computing local parameters. Spline function value s(u; v) can be computed from
local parameters using M-�le s42deval.

Example: The FVI spline on rectangular grid (Fig. 3) can be computed using
following sequence of function calls:



hx=pi/3; x=[-pi:hx:pi]; y=x; hy=hx; S=sin(X.^2+Y.^2);

S10=zeros(size(S));S01=S10;S20=S10;S02=S10;

S11=S10;S21=S10;S12=S01;S22=S10;

[S10,S01,S20,S11,S02,S21,S12,S22]=...

lps42d(S,S10,S01,S20,S11,S02,S21,S12,S22,x,hx,y,hy);

xx=[-pi:pi/30:pi]; yy=xx;

for i=1:lengt(xx)

for j=1:length(yy)

sxy(i,j)=s42deval([xx(i),yy(j)],x,y,hx,hy,S,S10,S01,S11,...

S20,S02,S21,S12,S22);

end;

end;

[XX,YY]=meshgrid(xx,yy); surf(XX,YY,sxy);
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Figure 2: The data on rectangular
grid
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Figure 3: The solution of FVI prob-
lem on simple rectangular grid

3 Quartic splines on general knotset

We can use various local representations of quartic splines according to boundary
conditions used or another needs. Some overwiev of local representations for FVI,
MVI and DVI quartic splines is given in [8].

3.1 FVI problem in various local representations

Problem:
Let us have given knots x = fxi; i = 0(1)n + 1g and points t = fti; i = 0(1)ng



such that xi < ti < xi+1; i = 0(1)n, and function values g = fgi; i = 0(1)ng.
Find a quartic spline s41 with knots x interpolating function values g in points
t.

The needed local parametersm, M of (g,m,M) representation we can compute
using M-�le spl4.The computing of function values using these local parameters
is implemented in function spl4hodn.
If the (g,s,m) representation is used, the local parmeters s, m are computed by
M-�le s41smfvi . Then spline function value s(x) can be computed from these
local parameters by M-�le s4gsmval .

3.2 DVI problem in (g, s, M) representation

Problem:
Let us have given knots x = fxi; i = 0(1)n + 1g and points t = fti; i = 0(1)ng
such that xi < ti < xi+1; i = 0(1)n, and values of the �rst derivatives g =
fgi; i = 0(1)ng. Find a quartic spline s41 with knots x interpolating values of
derivatives g in points t.

The needed local parameters s, M we can compute using M-�le spl4d. The
computing of function values using these local parameters is implemented in
function spl4hodd.

Example: The DVI spline on general grid (Fig. 4) can be computed using
following sequence of function calls:

x=[-2:0.5:5]; t=[-1.8:0.5:4.85]; g=exp(t).*(sin(2*t)+2*cos(2*t));

conds=[0,1]; valconds=[0.1,-0.1;-80,-329];

[s,M,h,d]=spl4d(t,x,g,conds,valconds);

plot(x,s,'x'); hold on;

for i=1:length(t) y(i)=spl4hodd(t(i),s,M,x,g,t); end;

plot(t,y,'o'); xx=[-2:0.01:5]; yy=zeros(size(xx));

for i=1:length(yy) yy(i)=spl4hodd(xx(i),s,M,x,g,t); end;

plot(xx,yy);

3.3 MVI problem in various representations

Problem:
Let us have given knots x = fxi; i = 0(1)n + 1g and mean values g = fgi; i =
0(1)ng. Find a quartic spline s41 interpolating mean values g.

The unknown local parameters m, M of (g,m,M) representation we can com-
pute using M-�le spl4m. The computing of function values using these local
parameters is implemented in function spl4hodn. For the special case of equidis-
tant knots the M-�le s4mvise can be used for computing local parameters s, m



of (g,m,M) representation. Then spline function value s(x) can be computed
from these local parameters again by M-�le s4gsmval .

Example: The MVI spline (Fig. 5) can be computed using following sequence
of function calls:

x=[-3:0.2:3]; g=diff(atan(x))./diff(x);

stairs(x,[g,g(length(g))]); hold on;

conds=[0,1]; valconds=[0.1,-0.06;0.1,0.06];

[m,M,h]=spl4m(x,g,conds,valconds);

stairs(x,[g,g(length(g))]); hold on;

xx=[-3:0.01:3]; yy=zeros(size(xx));

for i=1:length(yy) yy(i)=spl4hodn(xx(i),m,M,x,g); end;

plot(xx,yy);
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Figure 4: The solution of DVI prob-
lem with (solid) di�erent knots (x-
mark) and points of interpolation
(circle)
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Figure 5: Solution of MVI problem
(solid) with prescribed mean values
(stairs function)

4 Local and quasilocal splines

4.1 Local quartic splines

A local spline s43(x) 2 C1 we can obtain as the result of the interpolation of
a given general (independent) data fgi; si; si+1; mi; mi+1g in FVI, MVI, DVI
problems with quartic spline ( interpolant has one free parameter at DVI prob-
lem ) using local spline representation (g; s;m) implemented in M-�le s4gsmval
.



4.2 Quasilocal quartic splines

Quasilocal splines s42(s) we can obtain (see [9]), when we prescribe some part of
local parameters ( e.g. function values ) and compute the remaining part (e.g.
second derivatives) from continuity conditions ( for the �rst derivatives ) in knots.
Problem 1:
Let us have given knots x = fxi; i = 0(1)n + 1g and points t = fti; i = 0(1)ng
such that xi < ti < xi+1 ; i = 0(1)n, and function values s = fsi; i = 0(1)n + 1g
in x and g = fgi; i = 0(1)ng in t. Find a quartic spline with defect two with
knots x interpolating function values s and g.

The computing of unknown local parameters m at this FVI problem is realized
in M-�le s42smfv . For computing spline function values the M-�le s421mval
or yet mentioned s4gsmval can be used.

Example: The FVI quasilocal spline (Fig. 6) can be computed using following
sequence of function calls:

x=[0.1:0.1:2]; t=[0.15:0.1:1.95]; h=diff(x);

s=sin(log(x)).*sin(2*pi*x); g=sin(log(t)).*sin(2*pi*t);

plot(x,s,'x'); hold on; plot(t,g,'o');

for i=1:length(h) d(i)=(t(i)-x(i))/h(i); end;

for i=1:length(h)-1 p(i)=h(i)/h(i+1); end;

[m]=s42smfv(h,d,p,g,s,-7.709,4.015);

xx=[0.1:0.01:2]; yy=zeros(size(xx));

for i=1:length(yy) yy(i)=s4gsmval(1,x,t,s,g,m,xx(i)); end;

plot(xx,yy);

Problem 2:
Let us have given knots x = fxi; i = 0(1)n+1g and function values s = fsi; i =
0(1)n+1g in x and mean values g = fgi; i = 0(1)ng. Find a quartic spline with
defect two interpolating function values s and mean valuesg.

The unknown parameters m of this MVI spline can be computed using M-�le
s421smmv which is common for splines with defects d = 1; d = 2 . For com-
puting spline function values the M-�le s421mval or yet mentioned s4gsmval
is used.

Example The MVI quasilocal spline (Fig. 7) can be computed using following
sequence of function calls:

x=[0:pi/8:2*pi]; h=diff(x);

s=sin(x); g=diff(-cos(x))./h; m=zeros(size(s));

plot(x,s,'x'); hold on; stairs(x,[g,g(length(g))]);

[s,m]=s421smmv(h,g,s,m,2);

xx=[0:pi/60:2*pi]; yy=zeros(size(xx));



for i=1:length(yy) yy(i)=s421mval(xx(i),x,g,s,m); end;

plot(xx,yy);
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Figure 6: The solution (solid line) of
FVI quasilocal problem 1 with dif-
ferent knots (x-mark) and points of
interpolation (circle)
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Figure 7: The solution (solid line)
of MVI quasilocal problem 2 with
prescibed mean values (stairs func-
tion)

Problem 3:
Let us have given knots x = fxi; i = 0(1)n+1g and function values s = fsi; i =
0(1)n + 1g and values of the �rst derivatives m = fmi; i = 0(1)n + 1g in x.
Find a quartic spline with defect two interpolating function values s and the �rst
derivatives g.

This problem can be solved using (g; s;m) representation of FVI or MVI prob-
lems. The algorithms for such problems are realized in M-�le s42qlc. Any spline
function value can be then computed with M-�le s4gsmval.

Example: The DVI quasilocal spline (Fig. 8) can be computed using following
sequence of function call:

x=[-2:0.5:5]; s=exp(x).*sin(2*x); m=exp(x).*(sin(2*x)+2*cos(2*x));

h=diff(x); plot(x,s,'o'); hold on;

[g]=s42qlc(h,0.0523848,s,m,2);

plot(x,s,'o'); hold on;

xx=[-2:0.01:5]; yy=zeros(size(xx));

for i=1:length(xx) yy(i)=s421mval(xx(i),x,g,s,m); end;

plot(xx,yy);

Problem 4:
Let us have given knots x = fxi; i = 0(1)n + 1g and function values s2i, values



of the �rst derivatives m2i and values of the second derivatives M2i in knots x2i
and the function values s2i+1 in knots x2i+1. Find a quartic spline with defect
two interpolating function values s2i and s2i+1, the �rst derivatives m2i and the
second derivatives M2i.

Problem 5:
Let us have given knots x = fxi; i = 0(1)n + 1g and function values s2i, values
of the �rst derivatives m2i and values of the second derivatives M2i in knots x2i
and values of the �rst derivatives m2i+1 in knots x2i+1. Find a quartic spline
with defect two interpolating function values s2i, the �rst derivatives m2i and and
m2i+1 and the second derivatives M2i.

Problem 6:
Let us have given knots x = fxi; i = 0(1)n + 1g and function values s2i, values
of the �rst derivatives m2i and values of the second derivatives M2i in knots x2i.
Find a quartic spline with defect two interpolating function values s2i, the �rst
derivatives m2i and the second derivatives M2i.

The remaining local parameters s,m can be computed using M-�le s42loc in
problems 4,5,6. In problem 6 we can even to reach the continuity of the third
derivative in knots x2i+1. The details can be found in [8]. For computing spline
function values the M-�le fvs42loc can be used.

Example: The quasilocal spline (Fig. 9) from problem 4 can be computed using
following sequence of function call:

x=[-5:0.5:5]; s=x.^4-50*x.^2+625; m=4*x.^3-100*x; M=12*x.^2-100;

plot(x,s,'o'); hold on;

plot(x(1:2:length(x)),s(1:2:length(x)),'x');

[s,ms]=s42loc(x,s,m,M,0);

xx=[-5:0.01:5]; yy=zeros(size(xx));

for i=1:length(xx) yy(i)=fvs42loc(xx(i),x,s,ms,M); end;

plot(xx,yy);

5 Quartic smoothing spline

The smoothing splines are used for approximation of noisy data. They give some
compromise between an interpolation of prescribed values and a least squares
approximation of them, regulated by smoothing parameter � (see [1]). The state-
ment of the general smoothing problem is given e.g in [4], [16]. The construction
of classical smoothing splines is based on extremal properties of some interpola-
tory splines (presented in variational theory of splines). For odd degree splines
the problem of function values smoothing was stated and solved - for the most
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Figure 8: The solution (solid line) of
DVI quasilocal problem 3 on simple
grid (circle)
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Figure 9: The solution (solid line)
of quasilocal problem 4 with knots
denoted by circle and point of inter-
polation by x-mark

known cubic spline smoothing see e.g. [1],[2] or [3]. The problem of mean values
smoothing for even degree splines was stated and solved e.g. in [11], [14] for
quadratic splines, in [5] and [12] for quartic splines. In this section the algorithm
for mean-value smoothing quartic splines on general knot sequence is described
(see [12]).

Problem:
Let us have given a knot sequence x = fxi; i = 0(1)n+1g with prescribed values
g = fgi; i = 0(1)ng positive weight coe�cients w = fwi; i = 0(1)n + 1g and
some smoothing parameter � > 0. Find a quartic spline s41 smoothing the mean
values g i.e

minimize

xn+1Z

x0

[s00(x)]2dx+ �
nX

i=0

wi(gi � pi)
2

where pi are unknown mean values of spline s(x).

The computing local parameters of quartic smoothing splines under previous
algorithms is implemented in function spl4vs. The spline function values can be
then computed with M-�le spl4hodn .

Example: The MVS complete spline (Fig. 10) with � = 0:01 can be computed
using following sequence of function calls:

alpha=0.001;

[m,M,p]=spl4vs(2,[1,-1;1,1],alpha,x,gd);



xx=[-5:0.01:5]; yy=zeros(size(xx));

for i=1:length(xx) yy(i)=spl4hodn(xx(i),m,M,x,p); end;

plot(xx,yy,'g:');
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Figure 10: The solution of MVS problem for � = 0:01 (dotted), � = 1 (dashed),
� = 1000 (solid)

6 Smoothing under conditions of convexity and

monotonicity

In this section the problem of shape preserving smoothing mean values by quartic
splines is shown using (g;m;M) representation (for more detailed description see
[17]). Under smoothing we understand here that resulting splines minimize some
smoothing functionals only on some subset of quartic splines space.

Problem 1:
Let us have given a knot sequence x = fxi; i = 0(1)n+1g with prescribed values
g = fgi; i = 0(1)ng positive weight coe�cients w = fwi; i = 0(1)n + 1g and
some smoothing parameter � > 0. Find a increasing quartic spline s41 or s42
smoothing the mean values g.

Problem 2:
Let us have given a knot sequence x = fxi; i = 0(1)n+1g with prescribed values
g = fgi; i = 0(1)ng positive weight coe�cients w = fwi; i = 0(1)n+1g and some
smoothing parameter � > 0. Find a convex quartic spline s41 or s42 smoothing
the mean values g.

These problems are solved by function s4shapel which uses the function qp from
Matlab's Optimization Toolbox. The spline function value in any point can be



then computed with M-�le spl4hodn.

Example: The increasing MVS spline (Fig. 11) with � = 0:01 can be computed
using following sequence of function calls:

functional='second derivatives'; shape='increase '; alfa=0.1;

[m,M,p,J1]=s4shapel(1,shape,functional,alfa,x,g);

hxx=[x(1):pom:x(length(x))]; hyy=zeros(size(hxx));

for i=1:length(hxx) hyy(i)=spl4hodn(hxx(i),m,M,x,p); end;

plot(hxx,hyy,'g:');
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Figure 11: Increasing MVS quartic spline for � = 0:1 (dotted), � = 100 (dashed),
� = 1e6 (solid)

7 M-�les overwiev for quartic splines

For some more detailed description of these M-�les see [13].

Function computed values

s4gval FV s(t) on simple grid (from LP t,x,s,m,M )
s41dmM LP m, M of FVI quartic spline on simple grid
lp1ds4e LP of FVI quartic spline on simple equidistant grid
s42deval FV s(x,y) in 2D from 25 local parameters
lps42d 2D local parameters on rectangular equidist. simple knotset



s4gsmval FV of s(x) with LP g,s,m - for FVI, MVI, DVI problems
s41smfvi LP s,m from data g + BC (t,x - FVI)
spl4hodn FV s(x) from LP g,m,M (FVI, MVI)
spl4hodd FV s(x) from LP g,s,M (DVI)
spl4 LP m,M from data g + BC (FVI)
spl4d LP s,M from data g+BC (DVI)
spl4m LP m,M from data g+BC (MVI)

s4mvise LP s,m from data g+BC (MVI, MVS)

s42smfv LP m from data g,s of s42 (FVI)
s421smmv LP (s),m of s42 (s41) - (FVI)
s421mval FV of s42 (s41) , (FVI)
s42qlc LP g of quasilocal spline from data s,m - (FVI, MVI)
s42loc LP of local s42
fvs42loc FV of local s42

spl4vs LP of MVS spline
s4shapel LP of shape preserving MVS spline

LP - local parameters
s,m,M - function values, �rst and second derivatives in spline knots
FV, MV, DV - function, mean, derivative values
FVI, MVI, DVI - interpolation of spline function , mean, derivative values
BC - boundary conditions
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