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Abstract. The reconstitution of the history of a fatigue process is based on the knowledge of any

correspondences between the morphology of crack surface and the velocity of crack growth (crack

growth rate - CGR). The textural fractography is oriented to mezoscopic SEM magnifications

(30÷500x). Images contain a complicated texture without distict borders. The aim is to find any

characteristics of this texture which correlate with CGR. Pre-processing of images is necessary to

obtain a homogeneous texture. Three methods of textural analysis have been developed and realized

as computational programs in MATLAB: method based on the spectral structure of the image, method

based on a Gibbs random field (GRF) model, and method based on the idealisation of light objects

into a fibre process. To extract and analyze the fibre process, special methods - tracing fibres and a

database oriented analysis of a fibre process, have been developed.

Keywords: database, fatigue, fibre process, Fourier transform, fractography, Gibbs random field,

regression, texture.

1. INTRODUCTION

The main task of the quantitative microfractography of fatigue failures is the reconstitution of

the history of a fatigue crack growth process. Specimens of the material are loaded in the laboratory

under service conditions and the crack growth process is recorded. Fracture surfaces are documen-

ted by SEM and images are studied to relate some information present in the morphology of the

crack surface to the macroscopic crack velocity (crack growth rate - CGR). So a basis is obtained

on which an unknown CGR can be estimated from fracture surfaces of real parts. Finally, the crack

growth process is reconstituted using integration of CGR along the crack growth direction.

The traditional method is based on striations, fine equidistant grooves in the fracture

surface [3]. They belong to fractographic features - strictly defined measurable objects in the

morphology of the fracture surface. The method cannot be used when striations are not

visible, typically due to corrosion.

As an alternative, the textural method has been developed in our department since about 1990.

Structures in images of fracture surfaces are studied as image textures. The texture is a random

structure of similar elements with some kind of ordering. The main problem in fractography

consists in a continuous brightness scale and an absence of distinct borders of textural elements.

Suitable for the application of the textural method is especially the mezoscopic dimensional

area with SEM magnifications between macro- and microfractography (about 30 ÷ 500 x). These

magnifications were not used very much in the past for the absence of measurable objects in

images. The magnification to be used is limited by several conditions related to individual

images, to the whole set of images and to the image discretization. Images must be pre-

processed to obtain a homogeneous texture which is convenient for the analysis.

Within the textural method, fractographic information is extracted in the form of integral

parameters of the whole image. Two general approaches to the analysis have been studied:

1. computing statistical or model parameters directly from gray-scale images without any

respect to textural elements.

2. extraction of textural elements followed by the application of binary random field models.

For developing algorithms and computationl programs, MATLAB with Image Processing

Toolbox was used.



2. EXPERIMENT

Methods developed will be shown in an application to fatigue fracture surfaces of four

laboratory specimens (C16÷19) of the stainless steel AISI 304L used in nuclear power plants

[9]. CT (compact tension) specimens (Fig.1) were loaded by constant cycle  with parameters

∆F = 3400 N, R = 0.3,  f = 1 Hz in water at 20°C.

Fatigue crack surfaces were documented using SEM with magnification 200x. The sequence of

images was located in the middle of the crack surface (Fig.1) and the images were distanced by

0.4 mm. The direction of the crack growth in images is bottom-up. The real area of one image is

about 0.6 x 0.45 mm. Digital representation in 1200 x 1600 pixels and 256 brightness values was

used. The total number of images was 165. An example of a typical texture is shown in Fig.2.

From frequently repeated records of the crack length, the estimates of CGR were computed. The

course of the CGR related to the crack length was estimated and every image was assessed a value

of the CGR pertinent to its middle.

      

Fig. 1: Specimen for fatigue tests and loca- Fig. 2: An example of a typical texture in an ima-

ting of images in fatigue crack surface. ge of crack surface (detail 500x500 pixels).

3. GENERAL  COMMENTS

SETTING  SEM  MAGNIFICATION. An appropriate magnification must be optimized

with respect to several requirements [7]:

Within one image:

• the number of textural elements is representative enough to characterize the texture objectively,

• the texture is approximately homogeneous (the change with increasing CGR is negligible),

• the change of CGR within one image is negligible (it can be characterized by a constant).

Within the set of images:

• the general character of all textures is the same (the same type of analysis can be applied),

• some feature of the texture is significantly dependent on CGR.

Within the given image discretization:

• textural elements that are to be the source of information are well represented.

In practical cases, these requirements are counteracting and a compromise must be sought.
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PRE-PROCESSING  OF  IMAGES  is necessary in order to remove significant fluctuations of

mean brightness and contrast. A suitable method - normalization [6] - was proposed by

generalization from one-dimensional stochastic processes. The brightness is transformed by a

moving algorithm to mean value 128 and standard deviation 50 (for the 8-bit range). In contrast to

the generally used equalization, the shape of textural elements is conserved. The size of the mask is

a very important parameter fundamentally affecting the results.

THE  MULTILINEAR  MODEL. The experience showed that a single image characteristic

of any type is not robust enough to characterize the relation between CGR and the crack

morphology. Although the dependence can be very tight within a set of images from one crack

surface, on another crack surfaces (from different testing specimens) the same parameter can

depend on CGR in a different way. Therefore, we estimate a set of image characteristics of the

given type (for instance spectral) for every image, and this whole set is related to the value of

CGR (due to general qualities of crack velocity, its logarithm  log10v  must be considered).

The most simple model [8] expressing the CGR as a function of a set of image parameters

f1, f2,…, fk, is a multilinear function resulting into a regression equation (1). The values of

parameters cu can be estimated using the least squares method. The input information is

composed of the set of images with assigned values of the CGR. From every image, a set of

image characteristics fu is computed, completed with constant 1 and arranged into one row of

matrix F (2). Then the system of equations can be written in the form (3) where L is a column

vector of logarithms of CGR assigned to single images and C is a column vector of estimated

parameters cu in the sequence given by ordering values fu into rows of matrix F.
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Not all characteristics fu predicate the CGR. An instrument for testing the significance is the test of

the zero value of the estimated coefficients cu , u=1,…, k+1. We test the hypothesis H0: cu = 0 against

the alternative H1: cu ≠ 0. The test criterion is a Student’s t-distributed statistic (4). If  the absolute

value of tu  is lower than the critical value at the selected level of significance α  and  q-k-2 degrees of

freedom (6), the hypothesis H0 cannot be rejected and the parametr fu should be excluded.

A handicap originates from the multiparametric character of the method. The model

counterbalances many increments from different sources of information. Therefore, a

fractographic interpretation of the variety of textural elements is hardly possible.

4. METHODS

4.1  SPECTRAL  ANALYSIS  

The 2D Fourier transformation [1] is a decomposition of the image matrix X of the size

m x n into a linear combination of basic vectors B
r,s
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A basic vector is a matrix of the same dimensions m x n which represents a harmonic wave

with frequency r in the column direction and s in the row direction, expressed by the number

of periods within the dimensions of the image. The set of coefficients yr,s creates a complex

matrix Y of the same size as the image. The presence of single frequencies without respect to

wave phases is expressed by the set of amplitudes called spectrum, A=|Y| .

For the fractographic interpretation, suitable characteristics are not frequencies but

distances and directions (θ = 0 matches the direction bottom-up in the image) [8]. That is why

we interpret the spectrum in variables [period, direction] = [p,θ] . Basic vector B
r,s

 represents

a harmonic wave with period (wave length) pr,s and normal direction (direction of the wave

vector) θr,s
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To reduce the number of output spectral characteristics, a reasonable sorting of both

parameters can be introduced. Single segments of the spectrum defined by the Cartesian

product of intervals of  periods and directions, [p,θ] ∈(pi,pi+1) x (θj,θj+1), can be characterized

by the mean spectrum
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APPLICATION [8]. In the case mentioned above, the sorting of periods was defined in real

distances by interval borders  p = {1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 30} µm. Sorting of

directions was limited to 3 classes: directions close to the direction of crack growth θ ∈(-

15÷15°), directions close to crack front θ ∈(-90÷-75°) ∪ (75÷90°) and all other directions. All

combinations created 45 segments. Within the application of multilinear regression (1), 19

segments of spectrum have been found to be significant at the level of significance α = 0.05.
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Fig. 3: Comparison of  crack rates taken for Fig. 4: Crack growth in single specimens

input and given back from spectrum and reversal reconstitution (from

of images of crack surfaces. Ideal the end to the origin) using crack

agreement: y = x. rates estimated from images.

A comparison of experimental CGR taken for input and CGR values given back from the

spectral characteristics of images is shown in Fig.3. The relations of the crack length vs. the

number of loading cycles are demonstrated in Fig.4. One point represents one image.



4.2  GIBBS  RANDOM  FIELDS

A simple GRF model [4,11] of a texture reflects gray levels u(r,c) in single pixels, and

interactions - differences d = u1-u2 between gray levels of two pixels. All pairs of pixels with

the same distance vector [i, j] = [r1-r2, c1-c2] create a clique. A list of cliques that are taken

into account is called search window W. The distance vector [0,0] represents gray levels in

single pixels. At random textures, the significance of interactions decreases with the

increasing distance of both pixels creating the pair.

The main sample characteristic of an image x is a gray level co-occurrence histogram h(x).

hi,j,d is the number of interactions d in clique [i, j]. Probability of interactions is

pi,j,d = hi,j,d / [(m-|i|)(n-|j|)], where m,n are dimensions of the image.

The main GRF characteristic is potential V = {Vi,j,d}. Within Gibbs probability distribution of a

random field with a potential V, the probability of image x is proportional to exp(-V * h(x)),  where

* denotes a scalar product of arrays V and h(x) reshaped into vectors.

For a given image xo, potential V can be estimated in two steps: The first approximation of

the potential based on Taylor expansion of the likelihood function is refined by means of

stochastic relaxation. Within it, difference between the training sample xo and current sample

x
(t)
 is measured by chi-square distance
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In the course of relaxation, the difference ∆ decre-

ases to a constant and its fluctuations to zero.

A measure of the significance of cliques [i,j] are

their relative energies
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from which only that for small distance components

i,j are significant. The set of significant relative

energies can be used for characteristics of the images

to be applied in the multilinear regression (1).

APPLICATION [11]. 31 energies fi,j were chosen

that were significant in all images. From them, 25

have been found to be significant in the multilinear

regression at the level of significance α�= 0.05. The

result is plotted in Fig.5. One point represents one

image. The relation of the crack length vs. the

number of cycles is not visibly different from that in

Fig.4.

4.3  FIBRE  PROCESS

In many cases, the most remarkable elements of textures are light fibres with a different

thickness and shape. They reflect sharp ridges and edges in the fracture surface. This structure

can be abstracted into a fibre process [5], whose qualities are studied to find any sensitivity to

the velocity of the crack growth. The length of continuous fibres is an important property. The

requirement of analyzing the continuity of fibres in knots made it necessary to create a

database of the structure of the fibre process. Consequently it was found that such a database

can be used to estimate many important characteristics of the process.
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First we will show how fibre processes

may be extracted from fractographic images,

and then the creation and utilizing of the

database will be described.

  EXTRACTION OF FIBRES. Images

were normalized to receive a homogeneous

texture (Fig.6a), [6]. The binarization by

threshold met troubles because objects

received did not respond with qualities of

fibres at any value of threshold. A

procedure, aimed at light fibre objects on

purpose, was proposed in following steps:

1. Marr & Hildreth edge detection [2,13]

modified on fibres. The basis is convolution

mask
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which enhances a vertical light fibre of the

width 1 or 2 pixels. By rescaling the mask

into Ur,s the effect can be optimized to a

fibre width about s/3 and a length of a direct

element r. In our case, U5,12 was rotated by

0, π/8, … , 7π/8 and the maximum of all

applications was taken for the result

(Fig.6b).

2. From the starting points - the lightest

pixels of the image, fibres are traced towards

both sides using a set of directional

modifications of the mask [10,13]
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where {1} denotes the position of the last

recognized crack pixel. The direction related

to the maximal result of convolutions is

accepted for the step of tracing the crack.

To avoid a double tracing or reversal

progress, recognized fibres are prohibited

for further processing in the width of 7

pixels. Tracing finishes when brightness in the last pixel found does not reach a selected limit.

By a special algorithm, joints of fibres are supplemented. Very small objects of skeleton are

   a

   b

   c

Fig. 6: Extraction of light fibres from an

image of fatigue crack surface.

a) normalized image (detail 400 x

300 pixels),

b) fibre detection (rescaled into

8-bit brightness scale),

c) traced significant fibres.

20 µm



excluded,  as they represent small non-fibrous patches.

ANALYSIS  OF  A  FIBRE  PROCESS  AND  CREATING  A  DATABASE [13]. For

any description of a fibre process, the binarized image must be analyzed into elements. Three

types of them are recognized: individual fibres, vertices and objects. Vertices are endpoints of

fibres. Two types of vertices can be distinguished: isolated fibre endpoints, and knots -

common endpoints of several fibres. An object is a continuous set of fibres.

Recognition of objects is a separate problem which can be solved by using generally

recommended algorithms.

In order to classify pixels of the process as internal points, knots or vertices, the number of

background-fibre changes along a curve surrounding every pixel in a given distance can be

used, as it is shown in Fig.7. Simultaneously, the number of fibres leaving every vertex is

obtained. The set of vertices is to be renumbered by their pertinence to objects.

Fig. 7: Testing the type of pixels of the process by the Fig. 8: Tracing a fibre with

number of changes backgroud - fibre along a  preference in row and

curve surrounding the pixel.   a) n = 1, endpoint, column direction

b) n = 2, internal fibre point,   c) n > 2, knot.

The following step of the analysis consists in recording fibres from the starting to the

finishing vertex. The simplest way is to check the neighbourhood of the size 3x3 of the last

recognized pixel, while all pixels of the process recognized up to now are prohibited to avoid

reversal steps. At first, row and column directions must be checked, and if no pixel has been

found, also diagonal directions (Fig.8).

During the analysis, the components of the database are gradually fulfilled. The structure of

the database was proposed so that it offers extracting information on objects and long fibre

branches without browsing. The database can be implemented in ordinary programming

languages. For computing characteristics of a higher order (e.g. mutual relations of fibres), the

database should be exported to a special platform, for example MS Access, where elements of

a given set of properties can be quickly selected. Although the database contains a complete

description of the process and its structure, the compression in comparison to a bitmap is

80 % and higher.

Within every fibre, starting and finishing vertices are distinguished. Vertices are organized

by objects and fibres by their starting vertices. So also the sequence of fibres is organized by

objects.

Let no, nv, nf and np be numbers of objects, vertices, fibres and all pixels of the process,

respectively. The database consists of four matrices:

O - the matrix of objects, size [no, 1].

O(i) is the number of the first vertex of object i.

V - the matrix of vertices, size [nv, 5].

V(j,1) is the number of the object containing vertex j,

V(j,2) is the row coordinate of vertex j,

a b c



V(j,3) is the column coordinate of vertex j,

V(j,4) is the number of the first fibre starting in vertex j,

V(j,5) is the position of the first fibre finishing in vertex j, in the list F(.,4).

F - the matrix of fibres, size [nf, 4].

F(k,1) is the number of the starting vertex of fibre k,

F(k,2) is the number of the finishing vertex of fibre k,

F(k,3) is the position of the first internal pixel of fibre k in the list P,

F(.,4) is the list of numbers of fibres ordered by the finishing vertex.

P - the matrix of internal pixels of fibres, size [np-nv, 2].

P(l,1) is the row coordinate of pixel l,

P(l,2) is the colunm coordinate of pixel l.

PARAMETRIC  MODEL  AND  JOINING  FIBRES  INTO  BRANCHES [13]. Let [xt,

yt], t = 1,2,…,n be the coordinates of the pixels of a fibre in the sequence from the starting to

the finishing vertex. A moving parametric regression can be used with the length of a single

regression T and the step of moving about T/3 (only the central third of the regression is

accepted). For the regression function, we used a combination of the polynomial and poly-

harmonic models (corresponding to Taylor and Fourier decomposition) in the elementary form
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Here j denotes the present recurrence of the regression and t0j is its starting index. The linear

component of functions (14) expresses the position and main course of the j-th segment, while

the goniometric components express its “waving”. A single regression does not have more

than one inflection. In consequence, the maximum density of inflections of the regression is

one to T/3 pixels of the fibre. This ratio defines the smoothing of details, which can be

selected by setting T with respect to the aims of the analysis.

In every knot, all possible pairs of fibres are checked whether they create a passing branch.

A common regression of merged fibres is estimated and its curvature in the knot serves for the

decision. If it is smaller than a selected threshold, fibres are judged as creating a passing

branch. This information is implemented in the database as 2 columns added to matrix F,

where, for fibre k,

F(k,5) is the number of the fibre connected in the starting vertex,

F(k,6) is the number of the fibre connected in the finishing vertex.

The absence of any connection is expressed by zero.

Final regressions are computed in the same manner as described above, for joined fibres.

Computing is so quick that it is not efficient to store regressions in database structures.

ESTIMATING  CHARACTERISTICS  OF  THE  FIBRE  PROCESS [13]. The parametric

model of a fibre process makes it possible to estimate a wide class of qualities. Characteristics

of the length, direction, position and shape of branches can be computed directly and exactly,

without any problems with the discrete image representation. For many cases, a sufficient

source for estimating characteristics are points of regressions [ x y, ] (14), that are pertinent to

single pixels of binary skeletons of fibres. Increments between them can be used to estimate

distributions of lengths and orientations:
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Also more complicated qualities can be studied - for example the joint distribution of lengths

and orientations (Fig.9), the random process of the fibre orientation along its length, etc. Many

of these characteristics would not be available by traditional methods.

APPLICATION [12]. For characteristics of a texture, the joint distribution of fibre length

and orientation (Fig.9) was used. The sorting was roughened into four classes for the direction

(θ∈(-10÷10°), (-40÷-10°〉∪〈10÷40°), (-70÷-40°〉∪〈40÷70°), (-90÷-70°〉∪〈70÷90°)) and six

classes for the length (defined by class borders 10-30-50-70-100-140-500 pixels). From

resulting 24 image parameters, 18 have been found to be significant in the multilinear

regression at the level of significance α�= 0.05. Results are documented in Fig.10. One point

represents one image. The relation of the crack length vs. the number of cycles is not visibly

different from that in Fig.4.
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5. CONCLUSIONS

SEM images of fatigue crack surfaces under magnifications between macro- and micro-

fractography (about 30÷500 x) contain a complex image texture, which is a rich source of the

information on the crack growth process. Three ways of the fractographic textural analysis

have been developed to practical applicability, including routine computational programs: the

spectral analysis, the modelling texture as a Gibbs random field, and the analysis of light

fibres. Within all the methods, the velocity of crack growth can be estimated as a multilinear

function of a set of numerical characteristics of images of fracture surfaces.

The textural fractography can complement or substitute traditional methods. It opens

possibilities to obtain new information from fracture surfaces, which had been lost up now.

Simultaneously, textural method transfers the main work from the operator to the computer.

Two new methods within general frame of image analysis have been developed:

• The method of tracing fibres is a practical alternative to creating a skeleton for fibre

structures without distinct borders in gray scale images.



• The method of composing of a database and a parametric model of a fibre process was
proposed to meet special requirements in fractography. However, the supposed character of
the fibre process is general at all. The method has been fully automated and we hope that it
could find a wide use in the analysis of planar fibre processes, tesselations, etc.
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