
HYBRID TABU SEARCH / GENETIC ALGORITHM IN MATLAB

Žďánský Martin, Poživil Jaroslav

Department of Computing and Control Engineering

Prague Institute if Chemical Technology

1 INTRODUCTION

Batch processes are often found in various fields of industry (e.g. chemical, computer,

machine-industries etc). The advantages of batch processes include high flexibility that allows

to quickly react to changes in demands, to change technology based on current situation, and

to quickly introduce new or modified products. Batch processes also allow easier sharing of

some of the resources (e.g. production units, storage capacities, manpower). Because a new

product is often likely to be manufactured on existing equipment, the emphasis is on process

planning and control rather than on sizing the equipment. Current trends in abovementioned

industries are towards products with shorter life cycles and higher functionality that are

tailored to specific market niches, and consequently process development problems are

encountered very frequently. The development of new or modified products “from scratch”

would be too costly and time-consuming, and so would be a purchase of new equipment, and

for these reasons new products utilize existing equipment. This means that the problem of

production scheduling in these plants is one of high importance.

Two categories of batch plants are widely recognized: multi-product plants and multi-purpose

plants. In a basic serial multi-product plant, called flowshop, the production line consists of a

single set of m processing stages, each machine is able to process one job at a time, the plant

has only one path for all products, and this path consists of a chain of stages where no

branches or loops exist. Hybrid flowshops can be derived from the classical multistage

flowshop, with at least one stage being composed of two or more identical parallel machines

(see Fig. 1). This work addresses the problem of finding optimum schedule for a set of n jobs

on such a configuration, with the makespan of a schedule as the objective function, and

describes an application of combination genetic/tabu search algorithm to solve the problem.

The algorithm was created as a Matlab source code, and the work analyses the suitability of

such approach.

 

Unit 1 
(mixing) 

Unit 2 
(heating) 

Unit 3 
(reaction) 

Unit 4.2 
(filtration) 

Unit 5 
(drying) 

raw 
materials 

final 
product Unit 4.1 

(filtration) 

Fig. 1. Example of a Hybrid Flowshop topology



2 PROBLEM DESCRIPTION

The flexibility of batch plants puts increased demands on production planning and control. A

series of campaigns, during which only one or few of the whole range of products are

manufactured, is usually a result of mid-term planning. The individual campaigns are the input

for the discussed problem of production planning and scheduling (PPS). Efficient plant

operation can be reached using different optimization criteria, and one of the most used ones is

minimization of makespan; this requires that batches (other terms such as “jobs” are used in

some industries) enter the flowshop in such an order that operations thorough chain of units

are as close to „lock step„ as possible. Finding optimum product sequence is an NP-hard

problem even for simple flowshops - see Garey [4].

Most of the heuristic algorithms for the m-stage flowshop scheduling problem can be divided

into four categories: applications of Johnson's two-machine algorithm, the use of a slope index

for the batch processing times, the minimization of idle time on machines, and stochastic

techniques such as tabu search, genetic algorithms and simulated annealing algorithms.

Palmer [9] first proposed a heuristic for minimizing makespan in a flow shop scheduling

problem. The heuristic generates a slope index for jobs and sequences them in descending

order of the index. Campbell et al. [3] developed a heuristic that is a generalization of

Johnson's algorithm. Gupta [6] presented the minimum idle time (MINIT) algorithm based on

the minimization of idle time at the last machine. Nawaz et al. [7] proposed that a job with

larger total processing time should have higher priority in the sequence. More recently, Ogbu

and Smith [8] used simulated annealing and Taillard [16] applied tabu search algorithm for

makespan criteria.

The hybrid flowshop scheduling has attracted considerable attention in recent years. Both

optimizing and heuristic techniques have been used as a solution methodology. The optimizing

techniques used so far are mostly branch and bound and mixed integer programming.

However, because of the NP-completeness of the problem, heuristics have been, in our view,

more popular.

Salvador [11] proposed the branch and bound approach to solve a special case of permutation

hybrid flowshop. Brah [2] formulated a mixed integer programming hybrid flowshop model.

Brah [1] also discussed the complexity of the problem and establishes that the hybrid flowshop

scheduling is indeed an NP-complete problem. Sridhar and Rajendran [14] used simulated

annealing approach to minimize the total flow time. Santos et al. [12] developed a global lower

bound for the FSMP makespan problem, and the same group of authors published an overview

of various heuristics [13].

Most recent developments usually use variants of branch and bound approach, and try to

combine them with other methods (e.g. Portmann et al. [10]), but other approaches (e.g.

neural networks) are also used.

The difficulty of the problem leads to the fact that most works that try to solve such problems

operate under some simplifying assumptions. The assumption we make is limiting the search

space to permutation schedules, an approach also used by most other works on this problem.

3 PROCESS MODEL

Batch processes can be modeled at many different levels of abstraction, and each of these

levels is best suited for different purpose. The simplified models we use are based on time

requirements of different operations occurring during manufacture. Based on the degree of

simplification, different types of models of time requirements are recognized, but most of them

are thanks to their nature flexible, applicable to description of most batch processes, because



the amount of process-specific elements is zero or minimal. Hybrid flowshop, as defined here,

is described by following input data and assumptions:

• a set of n batches manufactured

• a set of m processing stages, arranged into a fixed sequence

• vector U, describing the topology of the plant; in hybrid flowshop at least one processing

stage contains more than one processing unit

• processing times matrix T, its elements tij corresponding to processing time for operation j

and batch i

• a unit may only process one batch at a time

• once started, a unit must complete the processing of a batch

• all processing units in a single stage are identical in performance

• storage policy - algorithm was tested under one of the commonly used interstage storage

policies - unlimited intermediate storage (UIS)

A schedule for this problem is an assignment of units to batches that meets all the constraints

described above. The makespan of a schedule is the time of completion of the last operation

performed on a given set of batches minus the time the first operation began at.

4 COMBINED TABU SEARCH/GENETIC ALGORITHM

Our previous works on scheduling problems showed us that both the tabu search and genetic

algorithm are suitable tools for solving such problems. Each algorithm, however, has some

disadvantages. The algorithm we have developed is a combination of both approaches, and

tries to combine the positives of the two methods.

4.1 TABU SEARCH PRINCIPLES

Rather than being a single algorithm, the tabu search (TS) would be better described as a set of

concepts that the algorithms falling under this heading share [5]. For this reason, there is no

single algorithm called tabu search, and the discussion here is limited to algorithms we have

used in our work. The algorithm we use is descended from the local improvement techniques,

and while deterministic (at least in its basic variant) it is often classified as stochastic because

of its properties and behavior. Many of the variants of the algorithm incorporate some random

elements and are truly stochastic. Unlike downhill search it descended from, the tabu search

algorithm is able to leave local optimum and continue the search. Tabu search heuristics starts

from an initial solution, and at each step such a move to a neighboring solution is chosen to

hopefully improve objective criterion value. This is close to a local improvement technique

except for the fact that a move to a solution worse than the current solution may be accepted.

Algorithm tries to take steps to assure that the method does not re-enter a solution previously

generated which serve as a way to avoid becoming trapped in local extreme. The variant of the

algorithm we use accomplishes this by recency-based data structure called tabu list that

contains the moves that are discouraged at the current iteration. A move remains a restricted

one only for a limited number of iterations. Algorithm is not guaranteed to find optimum

solution; however, experimental results show that even if not successful it does find good near-

optimum solution.

4.2 GENETIC ALGORITHMS

Genetic algorithms (GAs) are a general methodology for searching a discrete solution space in

a way that is similar to process of natural selection procedure in biological systems. The



algorithm is a remarkably general one, and it can be applied to different problems if following

conditions are met:

a) solutions to the problem can be expressed in form of a string of characters

b) a „fitness“ criterion, which in some way quantifies the quality of a solutions, can be

computed for any valid string

c) strings in which „part“ of a good solution is present are rewarded by allocation of a higher

fitness than „average“ strings

Genetic algorithms, as the name implies, are a type of algorithms, not a single one. This means

that many variants of the basic idea exist, and that individual applications may be highly

different. However, every variant should include following operations: (1) a method for

encoding solutions to the problem into a string of characters; (2) an evaluation function which

takes a string as an input and returns a fitness value which measures the quality of the solution

the strings describes; (3) an adaptive plan, whose purpose is to produce new, improved

generation of solutions from the current one.

The strings encoding the solutions are often binary coded. This encoding, however, is not well

suited for our purpose. Instead, the string is composed of a sequence of unique identifiers.

Each identifier is represented by an integer number, and identifies a corresponding batch. The

use of such an alphabet does not violate the principles of GAs. Encoding the solution in this

way is enabled by the fact that the optimization is performed under the assumption of

permutation schedules. The strings containing substrings with small makespan generally have

smaller total makespan compared to average strings, as required in c), allowing the use of

GAs.

4.3 COMBINATION TABU SEARCH/GENETIC ALGORITHM

The algorithm combines the principles of the two approaches. At initiation it creates a set of

random valid solutions, and for several iterations it optimizes them using tabu search-based

method. Then the algorithm applies genetic principles to the set of solutions, and this creates a

new generation of solutions. The solutions retained from the previous generation keep the

associated tabu lists; new solutions begin with clear tabu lists. The process of several tabu-

principles iterations followed by a genetic-principles iteration continues until computation

termination criteria are met.

This approach combines the advantages of the two algorithms and mitigates the disadvantages.

Pure tabu search that uses only one solution can easily miss some promising areas of the search

space, and a larger set of parallel solutions does not exchange information. Genetic algorithms,

thanks to the nature of the problem solved, show lower solution quality with increasing

problem size; the most prominent cause is the damage to solutions that occurs during solution

crossover. The combined algorithm we propose combines the parallelism and information-

exchange of genetic algorithms with a strong local optimization of the recency-based tabu

search.

Tabu search components of the algorithm are similar to the pure tabu search algorithm we have

used in our previous works. We use fixed-length recency based tabu list. The neighborhood

generation method we use is pairwise exchange: it exchanges positions of two batches in the

schedule, and the move is selected using fastest descent technique.

Genetic components are similar to GA described in [15]. Makespan of solutions in a generation

is transformed into fitness using either a linear interpolation or a slightly modified linear fitness

scaling. Parents of a new generation are selected using deterministic reproduction with single-

string elitism and stochastic remainder sampling; the process uses the best makespan found

since the solution in question was evaluated in genetic iteration, not the current makespan of



the current solution. We use the crossover operator proposed in [15], with the addition of a

safeguard that allows crossover should all the chosen parents be copies of one solution. In this

case the algorithm selects a random other solution in the current generation as the second

parrent. Mutation operator used is random pairwise exchange.

In this work the algorithm stops after a pre-set number of consecutive unsuccessful genetic

iterations. This means that computation stops when maximum number of consecutive genetics-

based steps that do not improve objective criterion value is reached; the best solutions that

were found during this time are used as the results.

This works presents the results of preliminary tests of the algorithm; the algorithm presented is

still being developed. This means that we present results for two variants of fitness

computation. The evaluation function is based on the objective function, i.e. the computation

of makespan. Considering that the ranges of processing times, as well as other values, can

change for different applications, it is hardly possible to use the raw makespan value, and it

must be somehow transformed to allow better algorithm function. In our case we first use the

equation (1) to recompute makespans of a given generation to satisfy the condition c) required

for genetic algorithms.

(1) Fitness_new = Makespan_max*1.2 - Makespan

This new fitness is then transformed, either to a value in range <5;100> using linear

interpolation, with the minimum fitness in a generation equal to 5 and the maximum one to

100, or using linear fitness scaling with built-in safeguards to prevent certain error states (e.g.

negative fitnesses).

One of the advantages of heuristic algorithms such as the one we propose is the way the

constraints of the problem are treated. As long as neighborhood generation, crossover, and

mutation operators guarantee that only valid solutions will be generated, the algorithm itself

does not have to take any constraints into account, because all are incorporated into the

objective function. This means that for similar problems with different constraints the

algorithm, aside from minor changes of parameters, requires only rewriting of objective

function calculation and associated code to become applicable.

The random elements in the genetic parts of the algorithm guarantee asymptotic convergence

towards the global optimum, because the combination of stochastic remainder sampling and

mutations ensures that in infinite number of iterations the algorithm visits all valid solutions (of

which there is a finite number), including the optimal ones.

5 ALGORITHM EVALUATION

This paper present the results of preliminary tests of the algorithm; the algorithm presented is

still being developed, and we expect to test it on a greater variety of problems (e.g. different

intermediate storage policies, larger problems)

5.1 TEST PROBLEMS

As it was impossible to predict the exact nature of specific real problems should the algorithm

be applied to solution of such, we used a method common in similar studies. The problems the

program was tested on were sets of randomly (within defined parameters) generated input data

matrices. The dimensions of solved problems varied, and the results presented in this paper are

the ones for the problems with n/m={10/5, 12/8, 15/10}. The range of processing times was 1-

50; each stage contained 1 or 2 processing units.



5.2 ALGORITH IMPLEMENTATION

All the algorithms were realised as source codes in Matlab. While the speed of such a solution

is lower compared to some other possible methods, it offers all the functions and advantages of

the Matlab environment. Furthermore, the speed of heurostic algorithms results into acceptable

computation times, favourable to commercial MI(N)LP solvers, even for „human- readable“

source codes not optimized for speed. Our work proves that Matlab can be used as a tool for

AI applications such as genetic algorithms.

5.3 ALGORITHM PERFORMANCE

The algorithm was tested against pure TS and pure GA that use the same principles as the

algorithm we propose. The results indicate that performance of the combined algorithm is

better than that of either pure TS or pure GA.

TABLE 1

Statistics of algorithm performance for various problem dimensions, interpolated fitness

Search success rate

[%]

Average computation time

[%]

Problem

dimension

TS/GA TS GA TS/GA TS GA

10/5 99 94 77 100 100 94

12/8 87 91 57 100 120 77

15/10 77 64 17 100 115 51

Low performance of the GA is, we believe, caused by fitness calculation. Linear fitness scaling

improved the search success rate of GA for 10/5 problems up to 97%, but the code

occasionally failed because of problems caused by linear fitness scaling and associated code

(one of the reasons for such errors are problems with floating point operations precision). As

the algorithm is still being developed, and other variants (e.g. other neighborhood definitions)

are being tested, no detailed analysis was available at the time of submission of this work.

6 CONCLUSIONS

The algorithm we have proposed is able to optimize schedules for a hybrid flowshop,

minimizing the makespan, and the performance of this algorithm is better than of both pure

tabu search and pure genetic algorithm. The algorithm is, thanks to its composite nature, more

adaptable to changes, and retains the advantages commonly associated with heuristics.

Solution quality is higher than for tabu search, and the random elements in the genetic parts of

the algorithm guarantee asymptotic convergence towards the global optimum. Matlab source

codes that implement these algorithms run at acceptable speeds on PC-class computers.

Acknowledgement

This work has been supported by the Ministry of Education of the Czech Republic (program

No. MSM 223400007).



References

1. S.A. Brah, Complexity of the flow shop with multiple processors scheduling problem, and some

dominance conditions, in: Phua, K.H. et al. (Ed.), Optimization: Techniques and Applications, 1
(1992), World Scientific, Singapore, pp. 538-545

2. S.A. Brah, Scheduling in a Flow Shop with Multiple Processors, Dissertation Abstracts
International 50 (1988), 1587B (University Microfilms No. 89-122667)

3. H.G. Campbell, R.A.Dudek, and M.L. Smith, An heuristic algorithm for the n job m machine

sequencing problem, Management Science, 16/B (1970), pp. 630-637

4. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, CA, 1979

5. F. Glover and M. Laguna, Tabu search; Kluwer Academic Publishers, 1997

6. J.N.D. Gupta, Heuristic algorithms for multistage flowshop scheduling problem, AIIE
Transactions, 4(1) (1972), pp. 11-18

7. M. Nawaz, E. Enscore, and I. Ham, A heuristic algorithm for the m machine, n job flow shop

sequence problem, OMEGA, 11(1) (1983), pp. 91-95

8. F.A. Ogbu and D.K. Smith, The application of the simulated annealing algorithm to the solution of

the n/m/Cmax flowshop problem, Computers & Operations Research, 17(3) (1990), pp. 243-253

9. D. S. Palmer, Sequencing jobs through a multi-stage process in the minimum total time - A quick

method of obtaining a near optimum, Operations Research Quarterly, 16(1) (1965), pp. 101-107

10. M.-C. Portmann, A. Vignier, D. Dardilhac, and D. Dezalay, Branch and bound crossed with GA to

solve hybrid flowshops, European Journal of Operational Research, 107(2) (1998), pp. 389-400

11. M.S. Salvador, A solution to a special case of flow shop scheduling problems, in: Elmaghraby, S.E.

(Ed.), Symposium of the Theory of Scheduling and Applications, 1973, Springer, New York

12. D.L. Santos, J.L. Hunsucker, and D.E. Deal, Global lower bounds for flow shops with multiple

processors, European Journal of Operational Research, 80 (1995), pp. 112-120

13. D.L. Santos, J.L. Hunsucker, and D.E. Deal, Evaluation of sequencing heuristics in flow shops with

multiple processors, Computers & Industrial Engineering, 30(4) (1996), pp. 681-692

14. J. Sridhar and C.Rajendran, Scheduling in a cellular manufacturing system: A simulated annealing

approach, International Journal of Production Research, 31(12) (1993), pp. 2927-2945

15. P. Stluka, Využití prvků umělé inteligence při rozvrhování vsádkových výrob (Use of artificial

intelligence for scheduling of batch operations), Ph.D. thesis at VŠCHT Praha (1998)

16. E. Taillard, Some efficient heuristic methods for the flow shop sequencing problem, European
Journal of Operational Research, 47(1) (1990), pp. 65-74

kontakty na autory:

Technická 1905, 166 28 Praha 6, Czech Republic

Email: martin.zdansky@seznam.cz, Jaroslav.Pozivil@vscht.cz

Tel.: +420 2 2435 4259, Fax: +420 2 2435 5053


