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Abstract: The contribution concerns with the problems related to approximate identification of 
stochastic systems modelled by Markov chains. Although Markov chains are easily identifiable 
and adaptable their use is restricted because of extremely large dimension of the sufficient 
statistic. The paper refers about possible way, which helps to overcome this drawback. The 
proposed algorithm for dimensionality reduction in Markov chains is based on kernel smoothing 
technique. The applicability of the suggested methodology is presented in the Matlab 
programming environment. 
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1 Introduction 
 Most processes met in practice are uncertain in the sense that it is not possible to determine 
exactly the future output values of the process. (Controlled) Markov chain is an important class 
of universal black-box models suitable for the description of non-linear stochastic systems. When 
using the most general parameterisation their estimation as well as control design is simple. High 
dimensionality is their only but significant drawback.  
 Large variety of methodologies has been proposed to solve the dimensionality problem in 
parameterisation of MC (Kárný, M., et al., 1994; Pavelková, L., 1994; Hofreiter, M., 1997; 
Valečková, M., Kárný, M. & Sutanto, E.L., 2001).  

In this paper we introduce the approach for dimensionality reduction, which uses the 
kernel smoothing technique (Hofreiter, M. & Garajayewa, G.A., 2000). The proposed algorithm 
from the measured input-output data estimates parameters of transition probability matrix (TPM), 
which relate to the values of the so-called regression vector. These parameters are preserved and 
then used for the prediction of output signal. During the prediction time we (almost) always meet 
the situation, when the unknown regression vectors (which were not estimated before) have been 
occurred. In such a case the algorithm determines from the estimated TPM the set of 
neighbouring regression vectors, which are in close proximity to the measured unknown one. 
Then, according to the detailed description of their transition probabilities and distance 
information, the algorithm evaluates the resulting transition probability for the measured 
regression vector. By this way, the unknown row (regression vector) of TPM is estimated and the 
output prediction is determined. The result of this solution is considerable parameter reduction, 
which at least helps to overcome the mentioned above disadvantage of Markov chains. 
Furthermore, the proposed algorithm has been applied for one-step-ahead prediction of real ECG 
(Electro Cardio Gram) signal that is a basic instrument for a diagnosis of heart diseases in 
cardiology. Achieved results of this application confirm the feasibility of the proposed algorithm. 

 

2 Preliminaries 
 In this section, we sum up some basic relations on uncertainty whose application leads to 
solutions to all identification and control problems we deal with. Given three uncertain quantities 
a, b and c, hold the following three fundamental relations. 
 



Marginalization. • 

 ( | ) ( , | )p b c p a b c da= ∫  (1) 

where  represents conditional probability. ( |  )p ⋅ ⋅
Chain rule. • 

 ( , | ) ( | , ) ( | )p a b c p a b c p b c= ⋅  (2) 

Bayes formula. • 
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where the symbol ∝  stands for proportionality, i.e. equality up to a normalizing factor. 
 The integral taken over  is converted into a sum whenever a is a discrete-valued 
quantity. 

*a

 Bayes formula is the heart of Bayesian statistics. It can be derived from the above two 
relations. 
 

3 Markov Chain 
 Markov chains describe a very general class of dynamic systems, which are naturally 
discrete or treated by a digital technology. Identification of a Markov chain is shown below for a 
single discrete output ( )y τ  and discrete input u( )τ  (Hofreiter, M., 1996) 
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 Markov chain is a probabilistic model describing by the transition probability matrix the 
relationships of the discrete output ( )y τ  to the finite past input-output history d , stored in a 
discrete valued regression vector 
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Here 1,  2,  3,  ..., t τ =  is discrete time 
 ( )y τ  is yρ -dimensional vector of system outputs  

 ( )u τ  is uρ -dimensional vector of system inputs  
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3.1 System Model 
 By a system model M  we shall mean any mathematical model, which for the time period 
required through a finite set of parameters defines the set of conditional probability distribution 

  (4) ( 1)( ( ) | ( ),  ,  ),     1, 2,3,  ...tp y t u t d M t− =

 If the model structure is known and we need to estimate a finite set of unknown parameters 
θ  within a given model structure then M  in (4) can be replaced by θ .  



 Let us suppose that the output  depends on a limited amount of past data through )(ty zM
ρ -

dimensional statistic . The statistic (  )z ⋅ (  )z ⋅  (regression vector) maps 

  (5) ( 1)(  ) : ,   ( ) ( )tz d u t z−⋅ t→

 That means that the structure of the model is determined by the structure of the statistic 
 and it holds (  )M z ⋅

 ( 1)( ( ) | ( ), ,  ) ( ( ) | ( ),  )tp y t u t d p y t z tθ θ− =  (6) 

3.2 System Identification 
The problem of identification is to find a mathematical model of a given real system. If a 

mathematical model expressing input-output description is considered in the form (4) then the 
identification can be done in two steps (Peterka,V., I981): 

I. Estimation of the system model, i.e. calculation the posterior probability distribution 
( )( |  )tp dθ .  

 Under the assumption (6) we may derive the formula for calculation ( )( | )tp dθ  using the 
rules (1) and (2) 
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where ( )p θ  is a prior probability. 
II. Prediction of the output i.e. calculation of the posterior probability distribution 

  ( )( ( 1) | ( 1),  ).tp y t u t d+ +
 With respect to the integration rule (1) and the product rule (2) under the assumption (6) we 
may derive 

 ( ) ( )( ( 1) | ( 1),  ) ( ( 1) | ( 1),  ) ( | )t tp y t u t d p y t z t p d dθ θ+ + = + + ⋅ θ∫  (8) 

 Equation (6) holds for Markov chains as well. If the transition table is taken as an unknown 
parameter, then it is possible to estimate it from the known past history of the process via 
Bayesian statistics (Gao, H. & Kárný, M., I996; Pavelková,V., 1994). 
 In this case 

 ( , ) ( ( ) | ( ) , )z y p y t y z t z  θ θ= = =  (9) 

and the matrix θ  is given by [ ]( ,  )z yθ θ= . 
 Restrictions on θi  resulting from the definition of the conditional probability are: 

 ( ,  ) 0           ( ,  ) 1           for  
y

z
y S

z y z y z Sθ θ
∈

≥ = ∀ ∈∑  (10) 

 Two important pieces of information can be derived for the structure of Markov chain 
using the relations (7) and (8): 

I. Estimation of the parameters (the identification of probability table can be done for 
different independently for each row of the probability table) z
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II. Prediction of the output for a fixed t , fixed past history  and given  ( )td ( 1)z z t= +

 ,( )

( 1)

( )
( ( 1) | ( 1),  )

( )
z yt

z z z t

n t
p y t y u t d

t t
= +

+ = + =  (12) 

where ,  ,  t t1 0
, , ,( ) ( ) ( )z y z y z yn t n t n t= + 1 0( ) ( ) ( )z z zt t t t t t= + 1 1

,( ) ( )
y

z z
y S

n t
∈

= y∑ ,  t t ,  

is the number of events 

0 0
,( ) ( )

y

z z
y S

n t
∈

= ∑ y
1

, ( )z yt t

( ) ,  ( )z zy yτ τ= = t for ≤τ ,  may be interpreted as the number of 
outputs with value  following the regression vector with value  observed before the 
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 It is obvious from the previous that we may evaluate the actual matrix n t  
recursively 
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where the Kronecker symbol ba,δ  is defined by 
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 That means we may determine probability distribution of parameters and the predictive 
probability distribution for the model structure. Using (11) and (12) we obtain for evaluation the 
posterior probability distribution about Markov chain structure: 
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4 Approximate Identification of Markov Chains 
 The previous relations for estimation of the parameters and prediction of the output show 
that the estimation of Markov chain consists just in simple counting. However, as the dimension 
of the sufficient statistic is extremely large even for medium dimension of a regression model and 
small cardinality of data-value sets the applicability of Markov chains is restricted. 
 In real cases, it is not possible to assume, that the transition probability matrix will be 
known for all possible previous states and current inputs, which define the values of the 
regression vector and therefore a complete model of the system cannot be obtained in 
straightforward way. Nevertheless, if the parameters of the transition probability matrix are 
known for the regression vectors, which are in close proximity to the measured one, then it is 
possible to estimate unknown parameters of the measured regression vector through a kernel 
smoother. 
 Kernel smoother uses an explicitly defined set of local weights defined by the kernel to 
produce the estimate at each target value. Usually a kernel smoother uses weights that decrease in 
a smooth fashion as one moves away from the target point (Hastil & Tibshirani, 1997; Härdle, 
1990). The weight given to the j-th point in producing the estimate at  is defined by 0x
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where  is an even function decreasing in )  ( ld   l . The parameter λ  is the window-width, also 
known as the bandwidth and the constant c  is usually chosen so that the weights sum to unity. 
Epanechnikov kernel (Epanechnikov, V., 1969) ranks among popular kernels 
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 We may use this technique for estimation unknown parameters ( , )r yθ ;  if some 

parameters 
ySy ∈

{ }( , );    ,     :   ,j j j j
y rz y y S z S z r zθ λ∈ ∈ ≡ − <  0   ; >..., ,2 ,1= qqj  are known. In 

the previous relation was used the following notation: 
  is the for the first time observed value of the regression vector, r
  is the number of the known rows of the transition probability matrix q θ  with the 
corresponding values of the regression vector in the set , rS
  is the j-th value of  the regression vector, j z
   v  denotes the absolute value of , v
 λ  is chosen bandwidth, 

In such a case, the suggested algorithm estimates the parameters ( , )r yθ ; ySy ∈  
according to the following relation 
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 Described algorithm for output prediction does not require to know all parameters of the 
transition probability matrix θ  and therefore it preserves only parameters of the transition 
probability table relating to the values of the regression vector that has occurred by the actual 
time which radically reduces memory demands. 
 

5 Application 
 Described in the section 4 dimensionality reduction methodology using kernel smoothing 
technique was applied for one-step ahead prediction of real ECG (Electro Cardio Gram) signal 
that is a basic instrument for a diagnosis of heart diseases in cardiology. In Figure 1 is shown the 
fragment of ECG-output signal, which was used to illustrate the application of the suggested 
methodology. Sampling interval was 0.003 s. 
 It is should be noted that we consider the autonomous system. In this case d t  and 
instead of  (4) we have the set of conditional distributions 

( ) ( )y t=

 ( ( ) | ( 1),  ),     1, 2,  ...p y t y t tθ− =  (19) 
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Figure 1 - Course of ECG output signal; t - discrete time 

 Our task was to estimate Markov chain model and predict the output signal. Then, after 
applying the algorithm for parameter reduction in Markov chains, make a comparison of results 
and show the improvement of the prediction. 
 As we wanted to use Markov chains for modeling and output prediction, the output value 
interval was divided into 34 parts. The discretized output set is thus S . The 
structure of regression vector was determined 

}{ 34 ...,  ,3 ,2 ,1 =y

... ,2 ,1   ], = )2(   )1( [)( −−= ttytytz .  
 Figure 2 demonstrates the course of output  and the output prediction determined by 
the expected value  of the output  derived from the Markov model with the regression 
vector . Results of this prediction were received before we applied suggested algorithm for the 
parameter reduction. 
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Figure 2 - Course of actual and predicted signals.  

Situation before applying algorithm for dimensionality reduction 

 



 Number of unknown regression vectors, which occurred during the output prediction, was 
seventeen. In the Figure they are marked by symbol " . It is seen, that existence of unknown 
regression vectors cause inaccurate output prediction.  

"○

 Improved results of the output prediction were received after we applied new suggested 
method, which is described in previous section. It is evident from Figure 3, that mentioned 
previously algorithm is able to determine the set of neighbouring regression vectors, which are in 
close proximity to the measured unknown regression vector and according to the detailed 
description of their transition probabilities and distance information, the algorithm evaluates the 
resulting transition probability for the measured regression vector. By this way, the unknown 
rows of transition probability table are estimated and the output prediction is determined and 
improved. 
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Figure 3 - Course of output and predicted signals.  

The situation after applying algorithm for dimensionality reduction 
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 Figure 4 - Enlarged window time interval 45 - 65 s of Figure 3 



 In the Figure 4 is illustrated output prediction, where the time interval [45, 65] was 
enlarged on purpose to accentuate the quality of prediction using mentioned algorithm. 
 To show the computation precision, the criterion of Mean Absolute Deviation (MAD) was 
chosen:  

1
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where Ey(t) is the output prediction determined by the expected value of the output y(t). Figure 5 
demonstrates the typical course of the MAD for algorithm with (the curve a) and without (the 
curve b) considering the neighboring regression vectors for output prediction. 
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6 Conclusion 
 This contribution develops an approximate prediction methodology in order to combat the 
curse of dimensionality inherent in Markov chains. For this purpose Kernel smoothing technique 
has been used. The proposed algorithm from the measured input-output data estimates parameters 
of transition probability matrix (TPM), which relate to the values of the regression vector. These 
parameters are preserved and then used for the prediction of output signal. In case the unknown 
regression vectors have been occurred, algorithm determines from the estimated TPM the set of 
neighbouring regression vectors, which are in close proximity to the measured unknown one. 
Then, according to the detailed description of their transition probabilities and distance 
information, the algorithm evaluates the resulting transition probability for the measured 
regression vector. By this way, the unknown rows (regression vectors) of TPM are estimated and 
the output prediction is determined. Furthermore, the proposed algorithm has been applied for 
one-step-ahead prediction of real ECG (Electro Cardio Gram) signal that is a basic instrument for 
a diagnosis of heart diseases in cardiology. Achieved results of this application confirm the 
feasibility of the proposed algorithm.  
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