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Abstract In this paper, the implementation of finite element method for analysis of 
electromagnetic structures in time domain is presented. The finite element complex frequency 
hopping (CFH/FEM) and time-domain finite element (TD-FEM) methods are described. 
Finally, both methods are used to analyze a homogenous microstrip transmission line and the 
results are compared. 
 
 
Formulation 
For a homogeneous, isotropic, and a linear medium, starting from Maxwell’s equations the 
following scalar equation can be derived as 
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where Φ(x, y, z, t) represents either the electric or magnetic field components, and ε, µ, σ are 
the permittivity, permeability, conductivity of the medium respectively. f(x, y, z, t) is related 
to the external excitation. This expression can be applied to either a diffusion problem where 
the second term in the left-hand-side of (1) is dropped or to a wave equation where the third 
term is dropped. 
The equations can be transformed using finite element method to [1], [2] 
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where A = S , B = σµT , C = εµT , Ψ = {Φi} , q = G is the excitation matrix and S, T, G are 
the well-known matrices of the original finite element method implementation [1]. 
 
 
Finite Element Method with Complex Frequency Hopping (CFH/FEM) 

Introduction 

CFH uses the concept of moment matching to obtain both frequency- and time-domain 
responses of large linear networks through a lower order multipoint Padé approximation. It 
extracts a relatively small set of dominant poles to represent a large network that may contain 
hundreds to thousands of actual poles. 
The main steps involved can be summarized as follows: first, the given problem which is in 
the form of damped wave equation is formulated using FEM and the resulting ordinary 
differential equation is transformed to the Laplace domain; second, the Laplace domain 
output is expanded using Padé approximation at selected frequency points; third, information 
from each expansion point is used to generate the output frequency response or alternatively a 
unified set of dominant pole/residue pairs; finally, the results are transformed to the time-
domain in either analytical or numerical form. 
Taking the Laplace transform of (2) results in 

                            (Cs2  + Bs + A)X(s) = R(s)          (3) 

or 



     Y(s)X(s) = R(s)    (4) 

where X(s) = L{Ψ(t)} and R(s) is given by 

    R(s) = sC(Ψ0 + Ψ0
’) + BΨ0 + Q(s)   (5) 

where 
     Q(s) = L{q(t)}.    (6) 

 
 

Moment Matching Techniques [1] 

In general, moment matching technique approximates the frequency response of a Taylor 
series expansion in the complex s-plane. The moments (coefficients of the expansion) are 
matched to a lower order transfer function using a rational Padé approximation. This transfer 
function can be used to obtain the output response. Single Padé approximations are accurate 
near the point of expansion in the complex s-plane and decrease in accuracy with increased 
distance from the point of expansion. Complex frequency hopping overcomes this problem 
and is summarized in the following section. 
 

A. Complex Frequency Hopping 
Complex frequency hopping [1] is a method by which the frequency response of a system is 
expanded in multiple Taylor series expansions in the Laplace s-domain. The expansion points 
are chosen on or near the imaginary axis because poles that dominate the transient and 
frequency response of a system are found there. The moments of the expansion are then 
matched to a rational Padé approximation. These Padé approximations have several useful 
properties, one of which is the convergence of the poles of the approximation to the actual 
poles of a system.  
Approach for generating the response of a system is given as follows: a set of rational transfer 
functions are generated at a minimized set of expansion points. It is the value of these transfer 
functions that is compared at points intermediate to the expansion points rather than a search 
for same poles. If two transfer functions are found to give the same frequency response at an 
intermediate frequency point between the two generating hops then these transfer functions 
are considered accurate. If this is not the case, then another hop is chosen between the two 
expansion points and an expansion is performed there. 
 

B. Padé Approximation [1] 
Consider the response vector X(s) represented in (4). Taylor’s series expansion of the output 
X(s) about a complex frequency point s = s0, is given by 
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where Mn is the nth moment vector of the Taylor’s expansion about s0 and is given by 
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A recursive equation for the evaluation of the moments can be obtained in the form 
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For each expansion point, the moments mn = [Mn](i); n=0,1,2, . . . (2q – 1) of an output i are 
matched to a lower order frequency-domain function in the form 
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for 0 < s ≤ jωn . 
 
For given L and M, the coefficients of the numerator and denominator of the transfer function 
are related to the moments by 
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where r= 0,l,..., L and mj=0 if j < 0. 
 

C. Binary Search Algorithm [1] 
Padé approximation is very accurate near the point of expansion i.e., s = s0. However, the 
accuracy of Padé approximation decreases as we move further away from the point of 
expansion similar to the case of a Taylor’s series expansion. 
In order to check the accuracy of an approximation, two expansion points are necessary. The 
two expansion points can be verified for their accuracy by finding the value of the transfer 
function at a point intermediate to these two expansion points [22]. Number of expansions 
required to obtain a fairly accurate set of transfer functions over a specified frequency range is 
controlled by a binary search algorithm. 
 
The steps involved in the binary search algorithm are summarized below. 
 
Step 1) Set fL = 0 and fH = fmax. 
Step 2) Expand the system’s response at frequency f  = fL. Determine the coefficients of the 

corresponding transfer function HL (s) using (10). 
Step 3) Expand the system’s response at frequency f  = fH. Determine the coefficients of the 

corresponding transfer function HH (s). 
Step 4) Set f = (fL + fH)/2 . Calculate HL(j2πf) and HH(j2πf). If, HH(j2πf) – HL(j2πf)< ε , 

where ε represents pre-specified threshold for relative error, GO TO Step 5. Otherwise 
expand at fmid =  (fL + fH) and determine Hmid(s). 

Step 5) If no middle frequency fmid is generated between any two other frequency expansions, 
STOP, ELSE, repeat Steps 24 between every two consecutive frequency points (e.g., 
between fL & fmid and fmid & fH). 

 
At the completion of the binary search algorithm, a set of transfer functions is generated. The 
frequency response at a particular frequency point is computed by choosing a transfer 
function valid for that region. This is repeated for all other frequency points and the system’s 
frequency response is computed. The time-domain response is obtained as a closed form 



function of the generated poles and residues or alternatively by using inverse fast fourier 
transform (IFFT). 
 
Implementation in MATLAB: 

f_lw = f_min; 

f_hg = f_max; 
id  = 1;     % for storing approx.coefs 
 
f(id) = f_lw;        
[a(id,1:iL),b(id,1:iM)] = app3b( A, C, exc, f(id), out, L, M); 
id = id + 1; 
 
f(id) = f_hg;        
[a(id,1:iL),b(id,1:iM)] = app3b( A, C, exc, f(id), out, L, M); 
id = id + 1; 
 
i_lw = id - 2; 
i_hg = id - 1; 
 
while f_hg>0        
  f_md = 0.5*(f_lw + f_hg); 
  h_hg = h( a(i_hg,1:iL), b(i_hg,1:iM), f(i_hg), f_md); 
  h_lw = h( a(i_lw,1:iL), b(i_lw,1:iM), f(i_lw), f_md); 
  acter= abs(h_hg - h_lw)/(abs(h_hg) + abs(h_lw)); % actual error 
 
  while acter>err          % high error    
    f_hg  = f_md; 
    f(id) = f_hg; 
    i_hg  = id; 
    [a(id,1:iL),b(id,1:iM)] = app3b( A, C, exc, f(id), out, L, M); 
    id    = id + 1; 
    f_md  = 0.5*(f_lw + f_hg); 
    h_hg  = h( a(i_hg,1:iL), b(i_hg,1:iM), f(i_hg), f_md); 
    h_lw  = h( a(i_lw,1:iL), b(i_lw,1:iM), f(i_lw), f_md); 
    acter = abs(h_hg - h_lw)/(abs(h_hg) + abs(h_lw)); 
  end 
 
  sup = [];        
  sup(1) = 0; 
  xx = 1; 
  i_p(1) = 1; 
  for n=1:(id-1) 
    if f(n) > f_hg 
      sup(xx) = f(n); 
      i_p(xx) = n; 
      xx = xx + 1; 
    end 
  end 
   
   
  f_lw = f_hg; 
  i_lw = i_hg; 
  [f_hg, ptr] = min( sup); 
  i_hg = i_p(ptr); 
   
end 
 
up = 10*f_max;        %sorting coefficients according to freq. 
id = id-1; 
for n=1:id     
  [fc(n), ptr] = min(f); 
  f(ptr) = up; 



  ac(n,1:iL) = a(ptr,1:iL); 
  bc(n,1:iM) = b(ptr,1:iM); 
end 

 

D. Moments Generation [1] 
To derive an expression for moments Mm, we can rewrite (4) using (6) and (7) at any arbitrary 
complex frequency point s = s0, and expanding the right hand side of (4) using Taylor’s 
series, we get 
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where  R(s0) = BΨ0 + Q(s0),  R‘(s0) = C( Ψ0 + Ψ0

‘) + Q‘(s0),  R‘‘(s0) = Q‘‘(s0)  . . . and    
R(n)(s0) = Q(n)(s0).  
Equating the coefficients of the powers of (s – s0) on both sides, we get 
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Generalizing we have   
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for n ≥ 2. 
 

In MATLAB notation: 
function [a,b] = app3b( A, C, exc, f0, out, L, Mm); 
 
nd = L + Mm + 1; 
[s,t] = size(A); 
 
s0 = j*2*pi*f0; 
Y  = A + s0*s0*C;    % equation (3)  
Y1 = 2*s0*C;     % first derivation of Y 
Y2 = 2*C;     % second derivation of Y 
iY = inv(Y);     % inverse Y 
 
 
M(1:s,1) = + iY(1:s,exc);  % equation (14) 
M(1:s,2) = - iY*(Y1*M(1:s,1));  % equation (15) 
M(1:s,3) = - iY*(Y1*M(1:s,2) + 0.5*Y2*M(1:s,1));  % equation (16) 
if nd > 3 
    M(1:s,4) = - iY*(Y1*M(1:s,3) + 0.5*Y2*M(1:s,2)); % equation (16) 
end 
if nd > 4 
    M(1:s,5) = - iY*(Y1*M(1:s,4) + 0.5*Y2*M(1:s,3)); % equation (16) 
end 
if nd > 5 
    M(1:s,6) = - iY*(Y1*M(1:s,5) + 0.5*Y2*M(1:s,4)); % equation (16) 
end 
if nd > 6 
    M(1:s,7) = - iY*(Y1*M(1:s,6) + 0.5*Y2*M(1:s,5)); % equation (16) 



end 
if nd > 7 
    M(1:s,8) = - iY*(Y1*M(1:s,7) + 0.5*Y2*M(1:s,6)); % equation (16) 
end 
if nd > 8 
    M(1:s,9) = - iY*(Y1*M(1:s,8) + 0.5*Y2*M(1:s,7)); % equation (16) 
end 
if nd > 9 
    M(1:s,10) = - iY*(Y1*M(1:s,9) + 0.5*Y2*M(1:s,8)); % equation (16) 
end 
 
m(1:nd) = M(out,1:nd); 
 
ind = 0;      % generating of system (12) 
for p=(L-Mm+1):L 
  ind = ind + 1; 
  for q=1:Mm 
    left(q,ind)=m(p+q); 
  end 
end 
right(1:Mm) = - m((L+2):(L+Mm+1)); % generating of right side of (12) 
right = conj(right'); 
 
b(1:Mm) = left\right;    % solving of system (12) 
b(Mm+1) = 1; 
 
for p=0:L 
  in    = L+1-p;  
  a(in) = 0; 
  for q=0:p 
    a(in) = a(in) + m(q+1)*b(in+q+1); % computation of a(in)  
  end 
end 

 
 

Time-Domain Finite-Element Method (TD-FEM) 

Introduction 

This method is based on general time-domain formulation. The time response of the structure 
is produced, so the fast Fourier transform must be used to convert it to the spectral domain 
consequently. The method is based on “step-by-step” solution. In the first step, the structure is 
excited. Then, the field components are computed from the values in previous two steps. 
 
General Implicit Two-Step Recurrence Algorithms [2] 

To formulate implicit TDFEM’s that involve the solution of a matrix equation, we start with 
the semi-discrete equation  
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Also, u(-1)=u(-δt) and u(0)=u(0) are assumed to be given either from the initial excitation or 
from previous iteration. Even though the implicit schemes involve solving a matrix equation 
for every time step, it is possible to derive implicit TDFEM’s that are unconditionally stable. 
The unconditional stability is very desirable when solving problems with very small features 
that lead to large variations in element size across the problem domain. Without loss of 
generality, we shall concentrate on deriving general two-step algorithms to obtain using the 
weighted residual principle. The approach begins by approximating the function u(t),         
t⊂(-δt,δt) by a second-order polynomial expansion 
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From (19), the first- and second-time derivatives are approximated as 
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Substituting (19) and (20) into the semi-discrete equation (17), weighting the residual by a 
test function W(t), and defining Θ1, Θ2 according to [2] yields 
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Once u(1) has been obtained from the above equation, a new time step can be started. Implicit 
algorithms of various kinds can be obtained from (21) by employing different Θ1 and Θ2 
values. A particular pair Θ1 = 0 and Θ2 = 1/8 is recommended in [2]. This results in an 
unconditionally stable implicit algorithm with truncation error O(δt2). 
Substituting these values into (21) we obtain 
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           (23) 
Further, B = 0 for shielded and lossless structures: 
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Expressing the u(1) yields 

  
__

2
2

)1(
2

)0(
2

)1(

42
2

4
fttututu δδδδ

−







+−








−=








+ − STSTST . (25) 

The u are row vectors. Now it is necessary to modify (25) to the form of equation system. The 
uT will then be column vectors. Taking advantage of the T a S symmetry (which is provided 
by the FEM) we obtain   

 
__

2)1(
2

)0(
2

)1(
2

)(
4

)(
2

2)(
4

ftututut TTT δδδδ
−








+−








−=








+ −TSTST . (26) 

 
MATLAB Implementation 
The notation is following: u(1)=uc, u(0)=ub, u(-1)=ua. The variable names are different for three 
successive steps, in order to eliminate the excessive copying.  

dt=dx/(c*sqrt(2));    % for linear approximation 
%dt=dx/(c*sqrt(32));   % for quadratic approximation 

 
Y=T+((dt^2)/4)*S;    % matrix on left side (26) 
Z=2*T-((dt^2)/2)*S;   % first matrix on right side (26) 
 
F=sparse(k(1),1);     
F(exc)=1;     % vector of excitation 
 
clear S; 
clear T; 
 
vys=zeros(krok+2,1); 
 
ua=zeros(k(1),1);     
ub=zeros(k(1),1); 
 
B = Z*ub - Y*ua;    % first step– right side of (26) 
uc = Y\B;     % solving eq. (26) 
vys(1)=uc(out);    % saving the results 
ua=ub;      % time shift 
ub=uc; 
 
B = Z*ub - Y*ua ;    % second step–right side of (26) 
uc = Y\B;     % solving eq. (26) 
vys(2)=uc(out);    % saving the results 
ua=ub;      % time shift 
ub=uc; 
 
B = Z*ub - Y*ua - (dt^2)*F; % excitation step – right side of (26) 
uc = Y\B;     % solving eq. (26) 
vys(3)=uc(out);    % saving the results 
ua=ub;      % time shift 
ub=uc; 
 
clear F; 
r=round((krok-3)/3); 
 
for i=1:r,     % over all other time steps 
   l=3*(i-1); 
   B = Z*ub - Y*ua;   % next step–right side of (26) 
   uc = Y\B;     % solving eq. (26) 
   vys(l+4)=uc(out);   % saving the results 
   B = Z*uc - Y*ub;   % next step–right side of (26) 
   ua = Y\B;     % solving eq. (26) 



   vys(l+5)=ua(out);   % saving the results 
   B = Z*ua - Y*uc;   % next step–right side of (26) 
   ub = Y\B;     % solving eq. (26) 
   vys(l+6)=ub(out);   % saving the results 
end 
 
figure(2); 
plot(vys);     % time response  
 
figure(3); 
spe=abs(fft(vys));    % computing of spectrum  
    
pt=round((length(spe))/2); 
krok=length(vys); 
df=1/(krok*dt); 
f=0:df:((pt-1)*df);   % frequency range 
plot(f,spe(1:pt));    % frequency response 

 
 
The Comparison 
The accuracy of both methods is compared on 2D cross section of a shielded dielectric 
supported air strip transmission line. The section is treated as a planar resonator where the 
acquisition of resonant frequencies (represented by wave modes in the real waveguide) is 
observed. The simplicity is the main reason for choosing the mentioned type of a waveguide. 
If the microstrip waveguide has no dielectric substrate, the analysis splits into two 
independent problems, TM and TE. The exact values are computed using common 
eigenproblem solvers, with Nx = Ny = N = 400 mesh density. The experiment showed that the 
TD-FE method is more accurate than the CFH/FE method. To make the comparison possible, 
the Nx =Ny = N = 20 mesh was employed for TD-FE method while the CFH/FE used the 
spatial resolution Nx = Ny = N = 40. The TD-FEM is significantly more time-consuming, 
however. The eigenfrequency error for TM mode is displayed in Fig. 1., Fig 2. 
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Fig. 1.: Eigenfrequency error for TM mode (N = 40 for CFH/FEM, N = 20 for TD-FEM)   
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 Fig. 2.: Eigenfrequency error for TM mode (N = 60 for CFH/FEM, N = 30 for TD-FEM) 
 

Conclusion. The CFH/FE method produces the response in the specified frequency range. 
Therefore, convenient frequency resolution can be chosen. The computer demands increase 
with widening the frequency range. Hence, the method is suitable for investigating the 
narrow-band or highly selective structures. 
On the other hand, the TD-FEM method yields the response in wide frequency range without 
possibility to reduce it and save the execution time. Better frequency resolution is achieved by 
increasing the number of time steps, but this is often unacceptable with respect to computer 
resources. For this reason, the TD-FEM method is applied to wide-band structures with 
advantage. 
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