
IMPLEMENTATION OF FINITE ELEMENT METHODS IN TIME DOMAIN

Milan Motl, Zbyněk Raida
Institute of Radio Electronics

Faculty of Electrical Engineering and Communication
Brno University of Technology

Abstract In this paper, the implementation of finite element method for analysis of
electromagnetic structures in time domain is presented. The finite element complex frequency
hopping (CFH/FEM) and time-domain finite element (TD-FEM) methods are described.
Finally, both methods are used to analyze a homogenous microstrip transmission line and the
results are compared.

Formulation
For a homogeneous, isotropic, and a linear medium, starting from Maxwell’s equations the
following scalar equation can be derived as

),,,(2

2
2 tzyxf

tt
=

∂
Φ∂

−
∂
Φ∂

−Φ µσµε∇ (1)

where Φ(x, y, z, t) represents either the electric or magnetic field components, and ε, µ, σ are
the permittivity, permeability, conductivity of the medium respectively. f(x, y, z, t) is related
to the external excitation. This expression can be applied to either a diffusion problem where
the second term in the left-hand-side of (1) is dropped or to a wave equation where the third
term is dropped.
The equations can be transformed using finite element method to [1], [2]

 qCBA =
∂
Ψ∂

+
∂
Ψ∂

+Ψ 2

2

tt
 (2)

where A = S , B = σµT , C = εµT , Ψ = {Φi} , q = G is the excitation matrix and S, T, G are
the well-known matrices of the original finite element method implementation [1].

Finite Element Method with Complex Frequency Hopping (CFH/FEM)

Introduction

CFH uses the concept of moment matching to obtain both frequency- and time-domain
responses of large linear networks through a lower order multipoint Padé approximation. It
extracts a relatively small set of dominant poles to represent a large network that may contain
hundreds to thousands of actual poles.
The main steps involved can be summarized as follows: first, the given problem which is in
the form of damped wave equation is formulated using FEM and the resulting ordinary
differential equation is transformed to the Laplace domain; second, the Laplace domain
output is expanded using Padé approximation at selected frequency points; third, information
from each expansion point is used to generate the output frequency response or alternatively a
unified set of dominant pole/residue pairs; finally, the results are transformed to the time-
domain in either analytical or numerical form.
Taking the Laplace transform of (2) results in

 (Cs2 + Bs + A)X(s) = R(s) (3)

or

 Y(s)X(s) = R(s) (4)

where X(s) = L{Ψ(t)} and R(s) is given by

 R(s) = sC(Ψ0 + Ψ0
’) + BΨ0 + Q(s) (5)

where
 Q(s) = L{q(t)}. (6)

Moment Matching Techniques [1]

In general, moment matching technique approximates the frequency response of a Taylor
series expansion in the complex s-plane. The moments (coefficients of the expansion) are
matched to a lower order transfer function using a rational Padé approximation. This transfer
function can be used to obtain the output response. Single Padé approximations are accurate
near the point of expansion in the complex s-plane and decrease in accuracy with increased
distance from the point of expansion. Complex frequency hopping overcomes this problem
and is summarized in the following section.

A. Complex Frequency Hopping
Complex frequency hopping [1] is a method by which the frequency response of a system is
expanded in multiple Taylor series expansions in the Laplace s-domain. The expansion points
are chosen on or near the imaginary axis because poles that dominate the transient and
frequency response of a system are found there. The moments of the expansion are then
matched to a rational Padé approximation. These Padé approximations have several useful
properties, one of which is the convergence of the poles of the approximation to the actual
poles of a system.
Approach for generating the response of a system is given as follows: a set of rational transfer
functions are generated at a minimized set of expansion points. It is the value of these transfer
functions that is compared at points intermediate to the expansion points rather than a search
for same poles. If two transfer functions are found to give the same frequency response at an
intermediate frequency point between the two generating hops then these transfer functions
are considered accurate. If this is not the case, then another hop is chosen between the two
expansion points and an expansion is performed there.

B. Padé Approximation [1]
Consider the response vector X(s) represented in (4). Taylor’s series expansion of the output
X(s) about a complex frequency point s = s0, is given by

 (7) n

n
n sss)()(0

0
−=∑

∞

=

MX

where Mn is the nth moment vector of the Taylor’s expansion about s0 and is given by

 !/
)]()([

0

1

n
s

ss
n

ss
n

∂

∂
= =

− RY
Mn (8)

A recursive equation for the evaluation of the moments can be obtained in the form

 [(9) !/][)](
1

0 rs
n

r
rn

r
n ∑

=
−−= MYMY

where

0

] ssr

r
r

s =∂
∂

= YY[(10a)

 RMY =00)(s (10b)

For each expansion point, the moments mn = [Mn](i); n=0,1,2, . . . (2q – 1) of an output i are
matched to a lower order frequency-domain function in the form

∑

∑

=

=

+
=== M

j

j
j

L

j

j
j

M

L
i

sb

sa

sQ
sPsXsH

1

0
][

1)(
)()()((11)

for 0 < s ≤ jωn .

For given L and M, the coefficients of the numerator and denominator of the transfer function
are related to the moments by



















−=





































+

+

+

−

−++

++−+−

+−+−

ML

L

L

M

M

KLLL

LMLML

LMLML

m

m
m

b

b
b

mmm

mmm
mmm

..
...

....
...
...

2

1

1

1

11

132

21

 (12)j

r

j
jrr bma ∑

=
−=

0

where r= 0,l,..., L and mj=0 if j < 0.

C. Binary Search Algorithm [1]
Padé approximation is very accurate near the point of expansion i.e., s = s0. However, the
accuracy of Padé approximation decreases as we move further away from the point of
expansion similar to the case of a Taylor’s series expansion.
In order to check the accuracy of an approximation, two expansion points are necessary. The
two expansion points can be verified for their accuracy by finding the value of the transfer
function at a point intermediate to these two expansion points [22]. Number of expansions
required to obtain a fairly accurate set of transfer functions over a specified frequency range is
controlled by a binary search algorithm.

The steps involved in the binary search algorithm are summarized below.

Step 1) Set fL = 0 and fH = fmax.
Step 2) Expand the system’s response at frequency f = fL. Determine the coefficients of the

corresponding transfer function HL (s) using (10).
Step 3) Expand the system’s response at frequency f = fH. Determine the coefficients of the

corresponding transfer function HH (s).
Step 4) Set f = (fL + fH)/2 . Calculate HL(j2πf) and HH(j2πf). If, HH(j2πf) – HL(j2πf)< ε ,

where ε represents pre-specified threshold for relative error, GO TO Step 5. Otherwise
expand at fmid = (fL + fH) and determine Hmid(s).

Step 5) If no middle frequency fmid is generated between any two other frequency expansions,
STOP, ELSE, repeat Steps 24 between every two consecutive frequency points (e.g.,
between fL & fmid and fmid & fH).

At the completion of the binary search algorithm, a set of transfer functions is generated. The
frequency response at a particular frequency point is computed by choosing a transfer
function valid for that region. This is repeated for all other frequency points and the system’s
frequency response is computed. The time-domain response is obtained as a closed form

function of the generated poles and residues or alternatively by using inverse fast fourier
transform (IFFT).

Implementation in MATLAB:

f_lw = f_min;

f_hg = f_max;
id = 1; % for storing approx.coefs

f(id) = f_lw;
[a(id,1:iL),b(id,1:iM)] = app3b(A, C, exc, f(id), out, L, M);
id = id + 1;

f(id) = f_hg;
[a(id,1:iL),b(id,1:iM)] = app3b(A, C, exc, f(id), out, L, M);
id = id + 1;

i_lw = id - 2;
i_hg = id - 1;

while f_hg>0
 f_md = 0.5*(f_lw + f_hg);
 h_hg = h(a(i_hg,1:iL), b(i_hg,1:iM), f(i_hg), f_md);
 h_lw = h(a(i_lw,1:iL), b(i_lw,1:iM), f(i_lw), f_md);
 acter= abs(h_hg - h_lw)/(abs(h_hg) + abs(h_lw)); % actual error

 while acter>err % high error
 f_hg = f_md;
 f(id) = f_hg;
 i_hg = id;
 [a(id,1:iL),b(id,1:iM)] = app3b(A, C, exc, f(id), out, L, M);
 id = id + 1;
 f_md = 0.5*(f_lw + f_hg);
 h_hg = h(a(i_hg,1:iL), b(i_hg,1:iM), f(i_hg), f_md);
 h_lw = h(a(i_lw,1:iL), b(i_lw,1:iM), f(i_lw), f_md);
 acter = abs(h_hg - h_lw)/(abs(h_hg) + abs(h_lw));
 end

 sup = [];
 sup(1) = 0;
 xx = 1;
 i_p(1) = 1;
 for n=1:(id-1)
 if f(n) > f_hg
 sup(xx) = f(n);
 i_p(xx) = n;
 xx = xx + 1;
 end
 end

 f_lw = f_hg;
 i_lw = i_hg;
 [f_hg, ptr] = min(sup);
 i_hg = i_p(ptr);

end

up = 10*f_max; %sorting coefficients according to freq.
id = id-1;
for n=1:id
 [fc(n), ptr] = min(f);
 f(ptr) = up;

 ac(n,1:iL) = a(ptr,1:iL);
 bc(n,1:iM) = b(ptr,1:iM);
end

D. Moments Generation [1]
To derive an expression for moments Mm, we can rewrite (4) using (6) and (7) at any arbitrary
complex frequency point s = s0, and expanding the right hand side of (4) using Taylor’s
series, we get

 [] =−++−++−+− ∑
∞

=

n

n
n sssssssssss)(2)()()(0

0

2
00000

2
0 MCBCABC

 






 −
++

−
+

−
+)(

!
)(........)(''

!2
)()('

!1
)()(0

)(0
0

2
0

0
0

0 s
n
sssssssss n

n

RRRR (13)

where R(s0) = BΨ0 + Q(s0), R‘(s0) = C(Ψ0 + Ψ0

‘) + Q‘(s0), R‘‘(s0) = Q‘‘(s0) . . . and
R(n)(s0) = Q(n)(s0).
Equating the coefficients of the powers of (s – s0) on both sides, we get

 [])(000
2

0 sss RMABC =++ (14)

 [] [])('2 00010
2

0 ssss RMCBMABC ++−=++ (15)

Generalizing we have

 [] []
!

)(2 0
)(

21010
2

0 n
ssss

n

nnnn
RMMCBMMABC ++−−=++ −−− (16)

for n ≥ 2.

In MATLAB notation:
function [a,b] = app3b(A, C, exc, f0, out, L, Mm);

nd = L + Mm + 1;
[s,t] = size(A);

s0 = j*2*pi*f0;
Y = A + s0*s0*C; % equation (3)
Y1 = 2*s0*C; % first derivation of Y
Y2 = 2*C; % second derivation of Y
iY = inv(Y); % inverse Y

M(1:s,1) = + iY(1:s,exc); % equation (14)
M(1:s,2) = - iY*(Y1*M(1:s,1)); % equation (15)
M(1:s,3) = - iY*(Y1*M(1:s,2) + 0.5*Y2*M(1:s,1)); % equation (16)
if nd > 3
 M(1:s,4) = - iY*(Y1*M(1:s,3) + 0.5*Y2*M(1:s,2)); % equation (16)
end
if nd > 4
 M(1:s,5) = - iY*(Y1*M(1:s,4) + 0.5*Y2*M(1:s,3)); % equation (16)
end
if nd > 5
 M(1:s,6) = - iY*(Y1*M(1:s,5) + 0.5*Y2*M(1:s,4)); % equation (16)
end
if nd > 6
 M(1:s,7) = - iY*(Y1*M(1:s,6) + 0.5*Y2*M(1:s,5)); % equation (16)

end
if nd > 7
 M(1:s,8) = - iY*(Y1*M(1:s,7) + 0.5*Y2*M(1:s,6)); % equation (16)
end
if nd > 8
 M(1:s,9) = - iY*(Y1*M(1:s,8) + 0.5*Y2*M(1:s,7)); % equation (16)
end
if nd > 9
 M(1:s,10) = - iY*(Y1*M(1:s,9) + 0.5*Y2*M(1:s,8)); % equation (16)
end

m(1:nd) = M(out,1:nd);

ind = 0; % generating of system (12)
for p=(L-Mm+1):L
 ind = ind + 1;
 for q=1:Mm
 left(q,ind)=m(p+q);
 end
end
right(1:Mm) = - m((L+2):(L+Mm+1)); % generating of right side of (12)
right = conj(right');

b(1:Mm) = left\right; % solving of system (12)
b(Mm+1) = 1;

for p=0:L
 in = L+1-p;
 a(in) = 0;
 for q=0:p
 a(in) = a(in) + m(q+1)*b(in+q+1); % computation of a(in)
 end
end

Time-Domain Finite-Element Method (TD-FEM)

Introduction

This method is based on general time-domain formulation. The time response of the structure
is produced, so the fast Fourier transform must be used to convert it to the spectral domain
consequently. The method is based on “step-by-step” solution. In the first step, the structure is
excited. Then, the field components are computed from the values in previous two steps.

General Implicit Two-Step Recurrence Algorithms [2]

To formulate implicit TDFEM’s that involve the solution of a matrix equation, we start with
the semi-discrete equation

 02 =++
∂
∂

+
∂
∂ fu

t
u

t
u SB

2

T , (17)

where

Ω•= ∫
Ω

dWW
c jriij ε2

1T

() Ω×•= ∫
Γ

dnWW
c jiij
1B (18)

Ω×∇•×∇= ∫
Ω

dWW j
r

iij µ
1S

 Ω
∂
∂

•= ∫
Ω

d
t
JWf ii 0µ

Also, u(-1)=u(-δt) and u(0)=u(0) are assumed to be given either from the initial excitation or
from previous iteration. Even though the implicit schemes involve solving a matrix equation
for every time step, it is possible to derive implicit TDFEM’s that are unconditionally stable.
The unconditional stability is very desirable when solving problems with very small features
that lead to large variations in element size across the problem domain. Without loss of
generality, we shall concentrate on deriving general two-step algorithms to obtain using the
weighted residual principle. The approach begins by approximating the function u(t),
t⊂(-δt,δt) by a second-order polynomial expansion

 















+⋅+−⋅−








−⋅= −

22
)(

22)(
1)(

2
)1(22)0(

2
)1(

2

tttuttutttu
t

tu δδδ
δ

. (19)

From (19), the first- and second-time derivatives are approximated as

 













 +⋅+⋅−






 −⋅= −

2
2

2
1)1()0()1(

2
ttututtu

tdt
du δδ

δ

 [)1()0()1(
22

2

21 uuu
tdt

ud
+−= −

δ
]. (20)

Substituting (19) and (20) into the semi-discrete equation (17), weighting the residual by a
test function W(t), and defining Θ1, Θ2 according to [2] yields

() ([]SBTSBT 1442
2
12 2

2
1

)0(
21

2
1

)1(−Θ−Θ−−+







Θ+Θ+






 +Θ+ ttuttu δδδδ)

() 02
2
12

__
2

12
2

1
)1(=+








Θ−Θ+






 −Θ+− ftttu δδδ SBT (21)

where

∫

∫

−

−= t

t

t

t

dttW

fdttW
f δ

δ

δ

δ

)(

)(
__

 (22)

Once u(1) has been obtained from the above equation, a new time step can be started. Implicit
algorithms of various kinds can be obtained from (21) by employing different Θ1 and Θ2
values. A particular pair Θ1 = 0 and Θ2 = 1/8 is recommended in [2]. This results in an
unconditionally stable implicit algorithm with truncation error O(δt2).
Substituting these values into (21) we obtain

 0
422

2
42

__
2

2
)1(

2
)0(

2
)1(=+








+−+








+−+








++ − ftttututtu δδδδδδ SBTSTSBT .

 (23)
Further, B = 0 for shielded and lossless structures:

 0
42

2
4

__
2

2
)1(

2
)0(

2
)1(=+








++








+−+








+ − fttututu δδδδ STSTST . (24)

Expressing the u(1) yields

__

2
2

)1(
2

)0(
2

)1(

42
2

4
fttututu δδδδ

−







+−








−=








+ − STSTST . (25)

The u are row vectors. Now it is necessary to modify (25) to the form of equation system. The
uT will then be column vectors. Taking advantage of the T a S symmetry (which is provided
by the FEM) we obtain

__

2)1(
2

)0(
2

)1(
2

)(
4

)(
2

2)(
4

ftututut TTT δδδδ
−








+−








−=








+ −TSTST . (26)

MATLAB Implementation
The notation is following: u(1)=uc, u(0)=ub, u(-1)=ua. The variable names are different for three
successive steps, in order to eliminate the excessive copying.

dt=dx/(c*sqrt(2)); % for linear approximation
%dt=dx/(c*sqrt(32)); % for quadratic approximation

Y=T+((dt^2)/4)*S; % matrix on left side (26)
Z=2*T-((dt^2)/2)*S; % first matrix on right side (26)

F=sparse(k(1),1);
F(exc)=1; % vector of excitation

clear S;
clear T;

vys=zeros(krok+2,1);

ua=zeros(k(1),1);
ub=zeros(k(1),1);

B = Z*ub - Y*ua; % first step– right side of (26)
uc = Y\B; % solving eq. (26)
vys(1)=uc(out); % saving the results
ua=ub; % time shift
ub=uc;

B = Z*ub - Y*ua ; % second step–right side of (26)
uc = Y\B; % solving eq. (26)
vys(2)=uc(out); % saving the results
ua=ub; % time shift
ub=uc;

B = Z*ub - Y*ua - (dt^2)*F; % excitation step – right side of (26)
uc = Y\B; % solving eq. (26)
vys(3)=uc(out); % saving the results
ua=ub; % time shift
ub=uc;

clear F;
r=round((krok-3)/3);

for i=1:r, % over all other time steps
 l=3*(i-1);
 B = Z*ub - Y*ua; % next step–right side of (26)
 uc = Y\B; % solving eq. (26)
 vys(l+4)=uc(out); % saving the results
 B = Z*uc - Y*ub; % next step–right side of (26)
 ua = Y\B; % solving eq. (26)

 vys(l+5)=ua(out); % saving the results
 B = Z*ua - Y*uc; % next step–right side of (26)
 ub = Y\B; % solving eq. (26)
 vys(l+6)=ub(out); % saving the results
end

figure(2);
plot(vys); % time response

figure(3);
spe=abs(fft(vys)); % computing of spectrum

pt=round((length(spe))/2);
krok=length(vys);
df=1/(krok*dt);
f=0:df:((pt-1)*df); % frequency range
plot(f,spe(1:pt)); % frequency response

The Comparison
The accuracy of both methods is compared on 2D cross section of a shielded dielectric
supported air strip transmission line. The section is treated as a planar resonator where the
acquisition of resonant frequencies (represented by wave modes in the real waveguide) is
observed. The simplicity is the main reason for choosing the mentioned type of a waveguide.
If the microstrip waveguide has no dielectric substrate, the analysis splits into two
independent problems, TM and TE. The exact values are computed using common
eigenproblem solvers, with Nx = Ny = N = 400 mesh density. The experiment showed that the
TD-FE method is more accurate than the CFH/FE method. To make the comparison possible,
the Nx =Ny = N = 20 mesh was employed for TD-FE method while the CFH/FE used the
spatial resolution Nx = Ny = N = 40. The TD-FEM is significantly more time-consuming,
however. The eigenfrequency error for TM mode is displayed in Fig. 1., Fig 2.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

15 20 25 30 35 40 45 50 55 60 65 70 75

f [GHz]

er
ro

r [
%

]

CFH/FEM
TD-FEM

Fig. 1.: Eigenfrequency error for TM mode (N = 40 for CFH/FEM, N = 20 for TD-FEM)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

15 20 25 30 35 40 45 50 55 60 65 70 75

f [GHz]

er
ro

r [
%

]

CFH/FEM
TD-FEM

 Fig. 2.: Eigenfrequency error for TM mode (N = 60 for CFH/FEM, N = 30 for TD-FEM)

Conclusion. The CFH/FE method produces the response in the specified frequency range.
Therefore, convenient frequency resolution can be chosen. The computer demands increase
with widening the frequency range. Hence, the method is suitable for investigating the
narrow-band or highly selective structures.
On the other hand, the TD-FEM method yields the response in wide frequency range without
possibility to reduce it and save the execution time. Better frequency resolution is achieved by
increasing the number of time steps, but this is often unacceptable with respect to computer
resources. For this reason, the TD-FEM method is applied to wide-band structures with
advantage.

Acknowledgement. Development, which is described in the presented paper, was financially
supported by the grant projects no. 102/01/0571 and 102/01/0573 of the Czech Grant Agency,
and by the research program no. MSM 262200011 of the Czech Ministry of Education.

References.
[1] M. A. KOLBEHDARI, M. SRINIVASAN, M. S. NAKHLA, Q. ZHANG and R.

ACHAR, “Simultaneous Time and Frequency Domain Solutions of EM Problems Using
Finite Element and CFH Techniques,” IEEE Transactions on Microwave Theory and
Techniques, vol. 44, no. 9, pp. 1526–1533, September 1996.

[2] LEE, J., LEE, R., CANGELLARIS, A. “Time-Domain Finite-Element Methods,” IEEE
Transactions on Antennas and Propagation, vol. 45, no. 3, pp. 430–441, March 1997.

Contact
motl@feec.vutbr.cz
raida@feec.vutbr.cz

Department of Radio Electronics
Brno University of Technology
Purkyňova 118
612 00 Brno

