
FLOWSHOP OPTIMISATION IN MATLAB – SIMULATED ANNEALING

ALGORITHM APPROACH

Jaroslav Poživil

Department of Computer and Control Engineering, Prague Institute of Chemical

Technology

1. INTRODUCTION

The purpose of this paper is to show that methods of artificial intelligence, simulated

annealing algorithms in particular, are very effective at solving difficult, important real-world

problems, specifically the optimization of serial multiproduct batch plant sequencing. We

have found that Matlab realization of SA allows us to obtain optimum or good suboptimum

solutions in acceptable times.

Batch processes are widely used in the chemical process industry and are of increasing

importance due to a great emphasis on low-volume, high-value-added products (e.g.,

pharmaceuticals and specialty chemicals). Optimal planning and control of batch chemical

plant offers immediate time- and money-savings with minimal investments into machinery.

Our work focuses on plants where several different products are being manufactured using

similar technology.

Multiproduct plant can be described as a periodical manufacturing of many batches of

distinct products in a series of campaigns. In this paper, only a sub-category of multiproduct

batch plants, a flowshop, is considered. The flowshop is a batch plant that consists of a fixed

series of apparatuses and available apparatuses need not be assigned to tasks. Solving

multiproduct batch plant production scheduling problem consists of two sub-problems. The

first one is the problem of determining start-times and completion-times for all operations, i.e.

creating detailed schedule for a known sequence of products. The second sub-problem,

hierarchically a higher one, is that of a finding optimal sequence of products that satisfies

contractual obligations. In the work presented in this paper, only permutation schedules (PS)

are used. In this case, the sequence of products manufactured stays the same on all

apparatuses, and the total number of configurations possible is (n!), where n is the number of

products to be processed. Results are often used in form of Gantt charts (Fig. 1 shows simple

example of such chart).
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Fig. 1: Example of a Gantt chart



Finding optimal product sequence is a typical NP-complete problem. Computation time

increases exponentially with increasing dimension of input dataset. The traditional method for

solving these problems is mixed integer non-linear programming (MINLP). We don’t believe

it is well suited for solving problems with bigger dimension, such as those usually found in

industry. The reasons for this are mainly long computation times and complexity of its

formulations. The main difficulty is the size of resulting problems. For realistic problems, the

MINLP problem may involve thousands (or tens of thousands) variables. Some of the

alternatives to MINLP that have been found (see [1], [3]) are different variants of simulated

annealing algorithm. The simulated annealing algorithm is a heuristic algorithm, and while

this means that finding optimal solution is not guaranteed except in the case of infinite

number of iterations, published works as well as our results show that the algorithm finds

optimal or very good near-optimal solutions of problems solved.

2. PROBLEM DEFINITION

We focus on one of problems of batch processes scheduling studied in [5], on flowshops.

Summarily, the scheduling problem for a flowshop can be stated as:

Given set of n products to be produced; set of m processing units; set-up,

transfer, processing and clean-up times; storage capacities; interstage

policy.

Required sequencing of products; assignment and timing of operations, for each

unit (i.e. which task, if any, the unit performs at any time during the time

horizon); and the flow of material through the network.

So as to optimize a given objective criterion.

Work presented later in this paper uses objective criterion in the form of minimization

of completion time. The completion time depends on the plant model used and on interstage

policy used. This work uses relatively detailed representation of batch processes (and one that

can even be used to describe semi-continuous operations) that breaks the operations down into

several sub-tasks. Because some of the sub-tasks considered are sequence-dependent, i.e. they

depend on the sequence of products, the resulting problem is MINLP formulation instead of

MILP, and therefore is even more complicated than older, more simplified models, but this

approach allows for more models realistic enough to be sufficiently applicable. The subtasks

are: set-up, load and unload, processing, clean-up, waiting. Interstage policies that are

considered in this work are the four most often used ones: unlimited intermediate storage,

finite intermediate storage, no intermediate storage and zero wait.

Unlimited intermediate storage policy assumes that unlimited capacities for storing

intermediate products are available between production steps. This means that when

processing of batch i on apparatus j is finished, the apparatus j can be freed for processing

batch i+1 even if the apparatus j+1 is still used simply by moving batch i into storage. The

operation i on apparatus j is finished in time Eij:

Eij = max [Ei(j-1), E(i-1)j + S(i-1)ij + ai(j-1)] + tij + aij , (1)

where S(i-1)ij is the time for setting-up empty apparatus j for processing batch i after batch i-1,

ai(j-1) is the time to transfer product i from apparatus (j-1), and tij is processing time of batch i

on apparatus j. It is assumed that transfer time for moving batch i from apparatus j into

apparatus j+1 equals that of moving this batch from apparatus j into storage.



Finite intermediate storage policy places between production steps limited storage

capacities. The number of the storage units between steps j and j+1 is zj. The equation for Eij

is then:

Eij = max [Ei(j-1) + tij + aij, E(i-1)j + S(i-1)ij + ai(j-1) + tij + aij, (2)

     E(i-zj-1)(j+1) + S(i-zj-1)(i-zj)(j+1) + F(zj)(S(i-zj)i0 + a(i-zj)j) + aij] ,

where F(zj) is a function that equals 0 for zj and otherwise equals 1. If all storage units are in

use and apparatus j+1 is also used, the batch must be stored for some time in apparatus j. The

processing of batch i can be finished only if at least one of the storage units from the zj units

available is free, and this means that in apparatus j+1 the processing of batch i-zj must be

started.

No intermediate storage policy assumes that no storage units are available, and therefore

the intermediate products can only be stored inside the apparatus j when apparatus j+1 is in

use. The appropriate equations are:

Eij = max [E(i-1)j + S(i-1)ij + ai(j-1), E(i-1)(j+1) + S(i-1)i(j+1) - tij] + tij + aij , (3.1)

in the case of the first apparatus, and

Eij = max [Ei(j-1), E(i-1)(j+1) + S(i-1)i(j+1) - tij] + tij + aij , (3.2)

in the case of all other apparatuses.

Zero wait policy requires that every batch must be transferred into next production step

immediately after the completion of the current one, i.e. there are no storage units, and the

intermediate product must not be stored in an apparatus. The computation of schedule is based

on the computation of time Eim that represents the time of finishing of processing of batch i on

apparatus m.

Eim = max [(E(i-1)1 + S(i-1)i1 + t a
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The remaining times are computed as follows:
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For more information on completion time algorithms, see ref. [2] & [4].

3. SIMULATED ANNEALING ALGORITHM

Simulated annealing algorithms are based on an analogy with the way metals cool and

anneal. During slow cooling of heated metal the atoms begin to align themselves into crystals.

During the cooling process transitions are accepted between low and high energy levels. The

probability distribution describing this is Boltzmann distribution. Finally a pure crystal is

formed, corresponding to minimum energy level allowed for the system. If a metal is cooled

quickly and the substance is allowed to deviate from equilibrium, state of minimum energy is

not reached and system ends in metastable, locally optimal structure. Optimization algorithm

tries to simulate this physical process. Let E1 be the objective function value of the initial

solution and T1 initial temperature. Basic version of the algorithm consists of the following



two loops. In the inner loop, new solution E2 is generated and if E2≤E1, the new solution is

made the current solution and the process is repeated. In the case of E2>E1 new solution is

accepted/rejected randomly with probability based on Boltzmann distribution:
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where KB is Boltzmann constant and Tk current temperature. If the solution is accepted, it

becomes current solution and the process continues, if the solution is rejected another solution

is generated from the current one. In outer loop, the temperature is decreased accordingly to

selected strategy of cooling.

To apply simulated annealing algorithm, following problem-dependent issues must be

resolved:

a) an objective function to be minimized,

b) defining possible solutions based on given constraints,

c) choosing variant of algorithm and finding optimal parameter values.

Using the theory of Markov chains, it was shown that simulated annealing algorithm is

guaranteed to converge to the set of optimal solutions, given an infinite number of iterations.

However, this asymptotic behavior can be approximated in polynomial time. Iterations are

stopped when defined termination criterion (pre-set temperature Tf is often used) is met, and

such approximation algorithms are known to give near-optimal solutions.

The objective criterion can be created to include different requirements, and some of

these are mentioned above. The objective criterion used in this work is the completion time,

i.e. the time of the completion of the last operation on the last apparatus.

The simulated annealing algorithm can be said to be partially derived from local search

algorithm. The algorithm starts at some point in solution space and searches only a part of the

solution space known as a neighborhood of initial solution. The neighborhood is defined as a

set of solutions that can be arrived at from current solution using some defined operations.

Typical examples of neighborhood generation methods for permutation schedules are: swap of

two elements (i.e. positions of two products in a sequence are swapped), swap of two

neighboring elements, moving an element (i.e. some product’s position in the sequence is

changed), and reversal of sequence (i.e. positions of elements in part of the sequence are

reversed). Both theory and practical tests shown us that best of these methods are swap of two

elements and move of an element. No significant difference between systematic and random

generation of the neighborhood was observed, and therefore systematic generation of

neighborhood is to be advised.

In analogy to steepest vs. fastest descent variants of local search algorithm, two methods

of exiting inner loop of SA algorithm exist. The first one, analogous to steepest descent, tries

to reach the equilibrium as it searches the whole neighborhood of a current solution, and uses

the best solution, before lowering temperature Tk. The second possibility is to exit the inner

loop and to decrease the temperature as soon as a solution with lower objective function value

is found.

At the start of the algorithm, the outer loop starts at temperature T0. The value of the

initial temperature can be estimated from the formula (6). If the Boltzmann constant KB is set

to 1 and the probability of accepting a move at the start of optimization is set to 90%, the

resulting equation is:
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where ∆Cij,max is the maximum change of the value of objective criterion during a single

transformation. The value of ∆Cij,max can be estimated by evaluating one or two hundred

randomly generated transformations before the start of optimization.

The stopping temperature Tf should be selected as equal to or lower than the smallest

observed change of value of objective criterion ∆Cij,min.

 The cooling that occurs in the outer loops can use one of several different algorithms.

The simplest case is that of T0=0, which means that the SA is reduced to local search

algorithm. The three following algorithm are the most often used ones:

a) linear cooling

This method is often favored for its easy implementation. The starting temperature T0, the

stopping temperature Tf and the number of cooling steps r are defined, and the temperature is

lowered by fixed value ∆ = (T0-Tf)/r.
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The value of Tf can be set as a smallest observed difference between two neighboring

solutions as observed during preliminary tests. The value of r is a compromise between

accuracy (high values of r) and speed (low values of r).

b) exponential cooling

In this case, the new temperature is obtained by multiplying the current temperature by a

constant α, α∈ (0;1).

T T
k 1 k+
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c) adaptive cooling

This method lowers the temperature accordingly to the results of statistical analysis of

fluctuations of values of objective criterion at current temperature. First, the mean value C

and the mean deviation σ(C) are calculated for all the solutions generated in current inner

loop. These values are then used to calculate new temperature using some formula. Most often

used formula is probably the Aarts - van Laarhoven formula:
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The value of parameter δ is of high importance, as low values of δ (δ <1) slow down

computation due to bad convergence, and high values of δ (δ >1) cause the algorithm to

become stuck in non-optimal local extremes. Therefore the value of δ should be close to 1.

Determining the best method of cooling and its parameters is one of the most crucial

problems when using SA algorithm, as these can vary with different problems and even with

different numeric values of variables in solved problems.

Different methods for deciding whether to accept new solution in the inner loop exist.

The two criteria were used in our work and therefore should be mentioned. The first one is the



Metropolis criterion, which is the one used in basic variant of the SA algorithm as described

above, the second one is the Glauber criterion. Both of the criteria are described in Tab. 1

describing the probability of accepting new solution.

Cij < 0 Cij ≥ 0

Metropolis P = 1 P = exp (-∆Cij / KBT)

Glauber

P = 
( )exp /

exp( / )

−

+ −

∆

∆

C K T

C K T

ij B

ij B1

Tab. 1: Metropolis and Glauber criterion

The value of Boltzmann constant is usually set to one. The Metropolis criterion means

that all new solutions that lead to the improvement of objective function value are accepted,

and that as the temperature decreases the probability of accepting move that increases

objective criterion value decreases as well. In the case of Glauber criterion, even the good

moves can be rejected. The probability for accepting good move (i.e. one that improves

objective criterion value) increases for solutions with higher improvement and when

temperature is low, and the probability of rejecting bad move increases similarly. The

probabilities for both criteria are shown in Fig. 2; the Fig. 2.a shows the probability of

accepting bad move under Metropolis criterion, the Fig. 2.b shows acceptance probabilities

for Glauber criterion.
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Fig. 2: Probability of accepting a move as a function of temperature; a) Metropolis criterion,

b) Glauber criterion.

It is evident that the Metropolis criterion is somewhat faster and more direct, but does

have bigger problems with local extremes. Our tests confirm this, as a minor difference in

performance was observed when dealing with small problems (e.g. 10 products, 5

apparatuses), but no noticeable difference in performance was observed when bigger problems

(e.g. 20 products, 10 apparatuses) were solved.

The SA algorithm is not guaranteed to find optimal solution in a fixed amount of steps.

Computation termination criteria must be defined, both for the inner and the outer loop. The



computations in the inner loop should be theoretically stopped when the system reaches the

equilibrium. However, it is not possible to identify this state, and practical implementations of

the algorithm usually end the inner loop after L steps, where L is some fixed, high enough

value. The value of L is often set to the size of the neighborhood of a current solution y
i
; in the

case of swap of two elements transformation, the size of neighborhood is n(n-1)/2 where n is

the number of products. Some variants of the SA algorithm also exit the inner loop when

solution that conforms to some criteria is found. The often used criteria for stopping the outer

loop are the reaching of the stopping temperature Tf and the drop of the value of the derivation

of a curve describing the value of objective criterion as a function of temperature bellow the

pre-defined value ε (the curve is usually approximated by a 2nd degree polynomial).

4. COMPUTATIONAL RESULTS

We have tested the SA algorithm as a tool for solving sequencing problems in batch

plants. The test problems were sets of randomly generated problems of different properties.

Following are the details on test problems:

1. the plant operates as flowshop,

2. the plants operates under UIS, FIS, NIS or ZW policy,

3. the dimensions of the problems (n/m) are 5/10, 5/20, 8/4, 10/5, 10/15, 10/20, 15/5,

15/10, 20/5, 20/10,

4. neighborhood generation uses swap of two elements method,

5. randomly generated input data; processing times in range of 1-24; all other times: 1-4,

number of storage units under FIS policy: 0-1.

Following are the results of testing several algorithm variants and parameter settings. It should

be also noted that in cases of problems of large dimension (n=15, 20) it was not possible to

find optimal solution by using complete enumeration method, and therefore other approach

had to be selected. The optimal solution is assumed to be identical with the best solution of all

the solutions obtained by repeated solving of the same problem by different algorithms.

Starting and stopping temperature, number of iterations

The estimate of the starting temperature, as proposed in (5), is in fact more or less rule

of thumb that does not take into account many of the properties of the problem solved. This

means that in the case of scheduling problem as formulated in this work, this estimate is

unnecessarily high. Should the estimate of ∆Cij,max=20 be made (the real value is usually even

higher), the value of T0 based on formula (5) should be 200. Our work shows that the

performance of the algorithm is much better if the starting temperature is much lower, because

the aforementioned estimate of T0 results in long period of non-effective search at the start of

the algorithm. Fig. 3.a shows the relative mean deviation of a solution for constant values of

Tf=0.05 and r=50000, and Fig 3.b shows the average temperatures at which the optimal

solution was found. It is evident that the optimal solutions are all found at temperatures lower

than 5, and that the choice of starting temperature does not have significant impact at results.

The observation that the algorithm performs better when the starting temperature is lower is

probably due to the fact that the starting temperature is still high enough and then the fixed

number of iterations means higher resolution and consequently more iterations in the

proximity of the optimal solution.

The estimate of stopping temperature, i.e. a number equal to or smaller than ∆Cij,min,

proved to be correct, as setting of this value to ∆Cij,min (i.e. 1) was still too high. The

probability of accepting a bad move would be too high, and the optimization would end

prematurely, especially in cases of larger problems, as is evident in Fig. 3.b. The results of



sensitivity analysis as displayed in Fig. 4 show that the algorithm is somewhat faster when the

Tf is set at the lower end of the tested range.
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Fig. 3: Sensitivity analysis: a) the distance from optimal solution as a function of starting

temperature T0; b) critical temperature as a function of starting temperature T0.

The influence of the number of iterations (for T0 and Tf constant) is shown in Fig. 5.a

and Fig. 5.b. It should be evident that the decrease of relative mean deviation slows down as

the number of iterations increases, and the compromise between computation time and

accuracy must be reached, depending on the requirements and on computer hardware

available. We think that r=70 000 is probably large enough value in cases of smaller

problems, and the value of r=110 000 results in near-optimal solutions in cases of larger

problems (i.e. n=20, and result less than 1% from optimum).
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Fig. 6: The distance from optimum as a

function of computation time.
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Fig. 5: a) distance from optimal solution as f function of a number of iterations; b) the number

of iterations performed before best solution as a function of a total number of iterations in a

run.

The result of these tests is the proposition to set the starting temperature T0 to 5, the

stopping temperature Tf to 0.05 and number of iterations to aforementioned values when

problems of this type are solved, and when applying this SA algorithm to problems slightly

more different to adjust these proposed values accordingly to principles and observations

mentioned.

Lowering of temperature

Two different cooling strategies have been tested: linear cooling and exponential

cooling. The results of the tests are shown in Fig. 6, and it should be clear that the exponential

cooling offers better performance. This is probably due to the fact that as the exponential

schedule spends less time in the initial search and more time in the lower-temperature area,

there is more time for the system to reach the equilibrium.

The variant of the algorithm based on the fastest descent principle was also tested, but

its performance was unsatisfactory. While being somewhat faster, the algorithm gave worse

results, even when the computation termination criteria included zero derivation of the

relative mean deviation decrease no significant change was observed.

5. CONCLUSIONS

We have created in Matlab a simulated annealing algorithm for solving scheduling problems.

We have found that Matlab realization of simulated annealing algorithm allows us to obtain

optimum or good suboptimum solutions in acceptable computation times.  Matlab source code

that implements this algorithm runs acceptable speed on PC-class computers. The batch

processes model used in this work is detailed enough to suggest that the algorithm should be

applicable to industrial problems with satisfactory results. The values of algorithm’s

parameters and its optimal version as found in our work are chosen so as to fit different

problems of the solved type, and can be summarily listed in the following table.

Also, the simulated annealing algorithm should be flexible enough for it to be usable in

other related areas, and to offer further improvement regarding batch process representation,

scheduling constrictions etc.



Cooling schedule: exponential cooling, steepest descent

Acceptance criterion: Metropolis

Parameter values: T0=5, Tf=0.05, r=100 000,

T0 should not be greater than ∆Cij,max
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