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Abstract 

Dusty plasmas have received much attention in the last decade, in particular because dust 

contamination of plasma is a serious problem in industrial applications. We have developed a 

MATLAB code enabling complex numeric investigations of dust particles levitating above the 

electrode in rf sheath. Charges, forces, balancing radii and other quantities concerning dust 

particles are analyzed in dependence on plasma state, position within the sheath and applied 

mathematical models. 

 

 

Introduction 

A number of papers concerning experimental and theoretical studies of dusty plasmas appear each 

year. The permanent interest arises from various applications in astronomy [1,2] and technology [3,4]. 

Various models were suggested to describe dust charging in plasma bulk and sheath [5-7], forces 

acting on the individual dust particle [8,9] and collective behavior of dusty clouds [10-13]. We 

will limit our modeling on particles in radio – frequency (rf) plasma sheath. Our computations 

will include both the modeling of dust – plasma interactions and rf plasma sheath. The 

computational scheme partly follows [14]. 
 

 

2.  Modeling of rf sheath 

We suppose a capacitively coupled rf  ( MHz56.132/rf =πω )  discharge in argon plasma with the 

lower electrode powered. The local potential ),( xtU  in the sheath, with coordinate x  oriented vertically 

upward from the electrode, will be specified later. At the powered electrode we assume a harmonic 

potential 

)(sin)0,( rfrf0dc0 tUUtU ω+=        (1) 

Here dc0U  is the dc self bias and rf0U  is the amplitude of the rf potential oscillations. In capacitively 

coupled rf discharge the average current to the electrode must be zero: 
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T  is the rf period and ej  and ij  are the electron and ion currents, respectively. As this condition couples 

dc0U  and rf0U , only one of these parameters is optional. 

 



In asymmetric rf discharges, with powered electrode much smaller than the grounded one, the 

potential oscillations outside the sheath can be neglected [15]. It enables to define the boundary condition 

at the sheath edge, 

0),( =LtU           (3) 

where L  is temporarily unknown sheath thickness. 

The electrons are assumed to be Maxwellian, although this assumption is not always satisfied in rf 

discharges. As the rf frequency is for our conditions less than the electron plasma frequency, perf ωω < , 

the electrons are considered inertialess, i.e. instantaneously following the electric field. Then the electron 

number density in the sheath and electron current density to the electrode are given by 
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where sn  is the electron density at the sheath edge, eT  is the electron temperature and 

eeme 8 mkTv π=   is the mean thermal electron velocity. 

The ions are considered cold, i.e. their kinetic energy of drift motion is much greater than their 

thermal energy. As the plasma ion frequency is lower than the rf frequency, rfpi ωω < , the ions respond 

only to the average electric field. The time – averaged equation of ion motion in the sheath is then 
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Angle brackets represent time – averaging,  )(i xv   is the ion drift velocity. The last term on the right hand 

side of this equation is the friction force due to ion collisions with the neutrals; nn  is the neutral number 

density and inσ  is the ion – neutral collisional cross section. The corresponding boundary condition is 

Bi )( vLv −=           (7) 

where L  is the sheath thickness and 
2/1

ieB )/( mkTv =  is the Bohm velocity [16]. To ensure the ions are 

accelerated monotonously from the Bohm velocity at the sheath edge, the boundary condition 
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is in addition required. 

Neglecting ionization in the sheath, the ion continuity equation reads 

Bsii )()( vnxvxn −=          (9) 

hence 

Bsi vnej −=           (10) 

The above equations are completed by the Poisson’s equation 
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The system of differential equations (6,11) together with boundary conditions (1,3,7,8) and algebraic 

equations (4,9) is complete, giving  ),( xtU , ),(e xtn , )(i xn , )(i xv  and L . 

At the end of this section we shortly outline possible numerical algorithm. The system of three 

boundary conditions (1,3,8) is seemingly “overdetermined” as the Poisson equation (11) is of the second 

order. In fact the condition (8), written symbolically as 0)( =Lf , determines the unknown sheath 

boundary L . Temporarily we exclude this condition from the solved system and choose some guess 
)1(LL =  by definition. For this value we solve the system of coupled differential equations (6,11) with 

boundary conditions (1,3,7). This can be done by simple iterative procedure. At the beginning we suggest 

an estimation ),()0( xtU , e.g. linear or quadratic in variable x  and satisfying boundary conditions (1,3). 

From its time-average and equations (6,7,9) for the ion motion we find corresponding functions )((1)

i xv , 

)((1)

i xn . The solution )((1)

i xn  is then substituted in Poisson’s equation (11) with boundary conditions 

(1,3) to determine ),()1( xtU . The successive iterations rapidly converge. We finish this stage by 

evaluating  )( )1()1( Lff = . 

The procedure for value 
)1(L  is repeated for another value 

)2(L . After it the equation 0)( =Lf  can 

be solved, e.g., by secant method,  )(/)( )1()2()2()1()1()2()3( ffLfLfL −−= ,  and so on. 

 

 

3.  Modeling of dust particle 

 

3.1  Dust potential 
 

Under usual conditions the particle in the plasma sheath can be approximately considered as a 

spherical capacitor of the radius dr . Hence, its charge dQ  and potential dV  relative to the local potential 

of undisturbed plasma are related by 

dd0d 4 VrQ πε=          (12) 

The charge or potential of the particle is a result of electron and ion currents hitting its surface. The 

electron and ion fluxes reaching the particle are 
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Introducing the spreading or focusing factors eG  and iG  into these expressions is due to the repulsive or 

attractive electrostatic interaction between the fluxes and the dust particle. Within the frame of orbital 

motion limited (OML) theory [17] these factors are 
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where ),(e xtn  and )(i xv  are local values of electron density and ion velocity, respectively. 

The simplest model of dust charging in an rf plasma determines the steady value of voltage  

><= ddc VV   or charge  ><= ddc QQ   from the equation 

0ie =>Γ−Γ<          (17) 

balancing the average electron and ion fluxes impinging the particle. As is shown in [14], the time-

averaging can be with high accuracy realized by replacing en  with its mean value  ><= edce, nn .  To 

simplify the formulas we will not express time-averaging explicitly. For instance, eΓ  and dV  will 

represent electron flux and dust potential, respectively, averaged over one rf period. 

An alternative model of dust charging was proposed in [7]. This model includes elementary 

processes at the dust surface: adsorption and desorption of incoming charge carriers and their 

recombination on the surface. The balance equations for electrons and ions are 
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where  
2

die,ie, 4/ rπγ Γ=   are the electron and ion fluxes per unit area of the particle surface, ie,P  are the 

sticking probabilities for impinging electrons and ions, ie,σ  are electron and ion surface densities, ie,τ  are 

their residence times and Rα  is the coefficient for recombination. A more detailed structure of these 

coefficients as well as their relevant numerical estimations are given in [7]. Formulas (18,19) together 

with the capacitor formula (12) rewritten as 
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represent three algebraic equations for three unknowns dV , eσ , iσ . 

 

 



3.2.  Forces 
 

A dust particle in a plasma sheath experiences various forces [14]. The most common are gravity 

and electrostatic interaction, but in some conditions other types of forces can be important, e.g. ion drag 

force, neutral gas friction or thermophoretic force. The charged dust particles levitate above the electrode 

at the position where the resulting force is zero. 

The gravitation force is given by 
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where dm  is the mass of the particle, and dρ  is the mass density. A negative sign means that the force is 

oriented downwards to the lower electrode. 

The electric force is given by 

EQF dE =           (22) 

where  >∂∂<−= xxtUxE /),()(   is the local electric field averaged over rf oscillations. 

The ion drag force, depending on the mechanism of momentum transfer from ions to the dust 

particle, consists of two components [9,14], 
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The collection part is given by ions directly collected on the particle surface, 
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with the electrostatic focusing term iG  defined in (16). The Coulomb part is due to the momentum 

transfer from scattered ions not sticking to the surface, 
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where Λln  is the Coulomb logarithm with 

2

2

ii

d

di

2

2

ii

d

2

d

2

e

e0

)( 







+









+

=Λ

vm

eV
VG

vm

eV

ren

kTε

        (26) 

If the dust particle moves in the gas, the gas friction force appears. The expression depends on the 

nature of reflection of neutrals from the dust surface – if it is specular or diffuse [18]. For diffuse 

reflection we have 

ddf 2 vbmF −=          (27) 

where dv  is the velocity of the dust grain relatively to the gas and b  is the damping constant, 
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gp  is the gas pressure and mgv  is the mean velocity of gas atoms, ggmg 8 mkTv π= . 

 

 

4.  Numerical results 
 

Previous formulas have been incorporated into set of several codes, written in MATLAB. The codes 

enable complex investigation of particle behavior in the rf plasma sheath depending on the chosen model 

and parameters. Till now two models of rf plasma sheath have been realized. The first model is based on 

the coupled equations (6,11) for electric field and ion motion. We will call it here as Poissons’s model. 

The second one comes out from the indication that the sheath potential may by very closely approximated 

with a parabola [19]. This approximation enables to solve equations (6,9) and (4) for ion velocity, ion 

density and electron density in the sheath analytically. Computations in the parabolic approximation are 

very fast and quantitatively correspond to more sophisticated Poissons’s model, but, contrary to it, the 

parabolic model does not predict the sheath thickness L . 

Input parameters of presented rf sheath models were chosen as follows: electron temperature 

eV2e =T , plasma bulk density 
-316

0 m101×=n , dc self bias at the electrode relatively to the plasma 

bulk V50dc0 −=U  and self bias at the sheath boundary V12/edcL −=−= ekTU  (Bohm theory). As a 

working gas was argon at the pressure Pa3.13g =p  and temperature  K300g =T . 

 

 
 

Fig. 1 

 

In figure 1 time-averaged potentials  ><= ),()(dc xtUxU   from both models are compared. The 

distance x  from the electrode is normalized by electron Debye length 
2/12

se0Ds )/( enkTελ =  taken at 

the sheath edge. The sheath thickness in the parabolic model was adopted from the Poissons’s model. For 

our data  Ds7.15 λ×=L . The sheath boundary is depicted by the vertical dashed line. 

In dust modeling particles made of melamine formaldehyde of mass density 
33 kg/m105.1 ×=ρ  

and of radius 10 micrometers have been considered. Both dust charging models (17) and (18-20) were 

realized. As is seen in figure 2, their predictions of dust charge are quite different. The absolute value of 

dust charge in microscopic model is much lower in comparison to the value obtained by equating electron 

and ion currents. 



Figure 3 depicts the total force acting on the dust in both models. The microscopic model gives two 

equilibrium positions: The equilibrium point closer to the electrode is unstable while the outer is stable. 

The macroscopic model gives one stable equilibrium in this case. 

 

 
 

Fig. 2 

 

 
 

Fig. 3 

 
 

Fig. 4 

 
 

Fig. 5 

 

As is shown in figure 4, the ion drag force iF  becomes insignificant in the inner part of the sheath. 

The collection and Coulomb components of the ion force are shown separately. For comparison the 

gravitational force is added. 

Figure 5 shows the radii of levitating particles versus normalized distances from the lower electrode. 

The radius at each position is obtained by equating the local value of total force to zero. Both models of rf 

sheath give similar results. The particles with radius greater than about 19 µm will fall down on the 

electrode. 

The particles may serve as a fine diagnostic tool for the study of electric field in the sheath. 

Neglecting ion and neutral drag forces, the field strength E  at the stable position x  of trapped particle 

satisfies .0)()(dd =+ xExQgm  The unknown field strength in this formula is multiplied by the dust 



charge, which is not satisfactorily theoretically predicted (Fig. 2). This obstacle is also met in more 

elaborated dynamical methods [20]. The equation of motion of a dust particle is 
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where iEgtot FFFF ++=  is the total static force and b  is defined in (28). For small oscillations about 

the equilibrium point 0x  we get 
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The linearized equation describes dumped oscillations with the oscillation frequency 
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Stable equilibrium satisfies  0tot <′F . Neglecting ion drag and damping, the last equation is reduced to 
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The second equality was obtained under assumption that the charge remains constant during particle 

motion [21],  const.)(d ≈xQ  

The measurement of frequencies for dust particles of various radii oscillating in various distances 

above the electrode gives the function )(xω  experimentally. The last formula then represents a simple 

differential equation for field strength )(xE . Unfortunately, our computations show that the charge 

changes during particle oscillations cannot be neglected. It is clearly demonstrated in figure 6, in which 

frequencies computed from formulas (31) and (32) are compared. Neglecting charge changes during 

oscillations noticeable overestimates the resonance frequencies. 

For applied models we have also tested their sensitivity to optional input parameters. As a measure 

of sensitivity of an output parameter A  on an input parameter b  we have taken the ratio of their relative 

changes, 
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Figure 7 depicts the sensitivity of the balancing dust radius on the self bias at the electrode for each 

position in the sheath. For the model described by equations (18-20) the sensitivities of the dust potential 

dV  on electron sticking probability eP , electron residence time eτ  and recombination coefficient Rα  are 

4.0),( ed =PVs , 3.0),( ed =τVs  and 
4

Rd 102),( −×=αVs , respectively. The model is therefore 

insensitive to the exact value of Rα . The sensitivities of the sheath thickness L  on the electron 

temperature eT  and dc self bias dc0U  are  
2

e 102),( −×−=TLs   and  6.0),( dc0 =ULs , respectively. 

 



 
 

Fig. 6 

 
 

Fig. 7 
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