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Abstract 

SVM´s modelling approaches are used for automated specification of a functional 
form of the model. We provide the fit of the average nominal wages time series by 
SVM (Support Vector Machine) model over the period January 1,1991 to December 
31, 2006 in the Slovak Republic, and use them as a tool to compare their forecasting 
abilities with those obtained using Box- Jenkins methodology [1]. Some 
methodological contributions are made to dynamic and SVM´s modelling 
approaches in economics and to their use in time series modelling.  
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Introduction 
The wages time series are in fact stochastic in which successive observations are dependent and 

can be represented by a linear combination of independent random variables ε εt t, −1 , ... . If the 
successive observations are highly dependent, we should use in model past values of the time series 
variable and (or) current and past values of the error terms {ε t }. There are available techniques which 
are designed to exploit this dependency and which will generally produce superior forecasts. Many of 
these techniques are based on developments in time series analysis recently presented by Box and 
Jenkins [1]. 

In Support Vector Machines (SVM´s), a non-linear model is estimated based on solving 
a Quadratic Programming (QP) problem. In the next section of this article, we briefly describe the 
framework of SVM´s methods and support vector (SV) regressions within which our empirical 
investigation is conducted. Section 3 provides a fit of the SV regression model using the Mathlab 
program, discusses the circumstances under which SV regression outputs are conditioned and 
corresponding interpretation of SV regression results is also considered. A section of conclusions will 
close the paper. 

1   Support Vector Machine for Functional Approximation 

This section presents quickly a relatively new type of learning machine – the SVM´s applied in 
the regression (functional approximation) problems. For details we refer to [2, 4, 6, 7, 9, 10, 11]. The 
general regression learning task is set as follows. The learning machine is given n training data, from 
which it attempts to learn the input-output relationship , where 
{ } consists of n pairs { } . The  denotes the ith input and  is 
the ith output. The SVM´s considers regression functions of two forms [4, 7]. The first one is 
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where  are positive real constants (Lagrange multipliers), b is a real constant (see formulas (3)-

(5)), 

*, ii αα

.)/(.ψ  is the kernel function. Admissible kernels have the following forms:  j
T
iji xxxx =),(ψ



(linear SVM´s)  (polynomial SVM´s of degree d), d
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exp),( jiji xxxx −−= θψ  (radial basis SVM´s), where θ  is a positive real constant and other 

(spline, b-spline, exponential RBF, etc.). 

The second approximation function is of the form [5] 
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where (.)ϕ  is a non-linear function (kernel) which maps the input space into a high dimensional 
feature space. In contrast to Eq. (1), the regression function  is explicitly written as a function 
of the weights w that are subject of learning. 
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The SV regression approach is based on defining a loss function that ignores errors that are 
within a certain distance of the true value. This type of function is referred to as an ε-insensitive loss 
function (see Fig. 1 and Fig. 2). 

Fig. 1: The insensitive band for one dimensional linear (left), non-linear (right) function 

Fig. 1 shows an example of an one dimensional function with an ε-insensitive band. The 
variables  measure the cost of the errors on the training points. These are zero for all points 
inside the ε-insensitive band, and only the points outside the ε-tube are penalised by the so called 
Vapnik´s ε-insensitive loss function. 
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In regression, there are different error (loss) functions in use and that each one results from 
a different final model. Fig. 2 shows the typical shapes of three loss functions [2, 4]. Left: quadratic 2- 
norm. Middle: absolute error 1-norm. Right: Vapnik´s ε-insensitive loss function. 

 

Fig. 2: Error (loss) functions 

 

Formally this results from solving the following Quadratic Programming problem 
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where C is the value of capacity degrees  

subject to                                                            (4) 
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To solve (3), (4) one constructs the Lagrangian 
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by introducing Lagrange multipliers ,  , i = 1, 2, ..., n. The solution is given by 
the saddle point of the Lagrangian [3] 
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which leads to the solution of the QP problem: 

 max
*, iαα

)())((
2
1

1,

**
j

T
i

n

ji
jjii xxϕαααα∑

=

−−− ∑∑
==

−++−
n

i
iii

n

i
ii y

1

*

1

* )()( ααααε                                        (8) 

subject to (7). 

After computing Lagrange multipliers and , one obtains of the form of (1), i.e. iα
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By substituting the first equality constraint of (7) in (2), one obtains the regression hyperplane 
as 
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Finally, b is computed by exploiting the Karush-Kuhn-Trucker (KKT) conditions [3]. These 
conditions state that at the optimal solution the product between the dual variables and constrains has 
to vanish. For the SVM´s, we obtain from,   and , i = 1, 2, ..., n that 

 and , respectively. Hence,   if and only if  

. From this and KKT conditions, we obtain 
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When solving the QP-problem with an interior point method [7, 8], it is more convenient to 
exploit primal-dual properties and to obtain b as a by-product of the optimization algorithm. Also note 
that for all samples inside the ε - band,  and   are zero. Therefore, we have a sparse expansion 
(1) of w in terms of . The samples that come with non-vanishing coefficients are called Support 
Vectors. 
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3   Causal Models, Experimenting with Non-linear SV Regression 
In previous section, we quickly introduced some of the main ideas of curve fitting based on 

solution quadratic problem. In this section we will discuss the problem of selecting the appropriate 
functional form of the SV regression model. The average nominal wages  can be described by the 
following regression equation 

tW

  = b + a  +tW 4−tW tε                                                                                                               (12) 

where a, b are the parameters, tε  is the disturbance term. We demonstrate here the use of the SV 
regression framework for estimating the model given by Eq. (12). If Wt exhibits a curvilinear trend, 
one important approach for generating an appropriate functional non-linear form of the model is to use 
the SV regression in which the Wt is regressed either against Wt-4 or the time by the form 
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where  is the vector of time sequence (regressor variable). Our next step is the 
evaluation of the goodness of last three regression equations to the data insite the estimation period 
expressed by the Mean Square Error MSE

)60 ..., ,2,1(=tx

A, and the forecast summary statistics the MSEEfor each of 
the models out of the estimation period.  

One crucial design choice in constructing an SV machine is to decide on a kernel. The choosing 
of good kernels often requires lateral thinking: many measures of similarity between inputs have been 
developed in different contexts, and understanding which of them can provide good kernels depends 
on the insight into the application´s domains. Tab 1 and corresponding Fig. 3 shows SVM´s learning 
of the historical period illustrating the actual and the fitted values by using various kernels. 



Tab. 1 presents the results for finding the proper model by using the quantities MSE. As shown 
in Tab. 1, the model that generates the “best” forecasts is the model with MSEE = 0.0012  (Fig. 3a).  

Tab. 1 SV regression results of three different choice of the kernels and the results of the dynamic 
model on the training set (1993Q1 to 2003Q4). In two last columns the fit to the data and 
forecasting performance respectively are analysed. 

 
Fig. MODEL KERNEL σ  DEGREE-d LOSS FUNCTION MSEA MSEE

3a causal (13)  RBF 1.6  ε - insensitive 0.0016 0.0012 
3b causal (13) RBF 0.52  ε - insensitive 0.0012 0.0318 
3c causal (13) Exp. RBF 1.0  ε - insensitive 0.000 0.0038 
3d Time S. (14) RBF 1.0  ε - insensitive 0.000 none 

 causal (12)     0.0026 0.0026 

The results shown in Tab.1 were obtained using degrees of capacity C = 104. The insensivity 
zone ε  and the degrees of capacity are most relevant coefficients. An increase in ε  means a reduction 
in requirements for the accuracy of the fit to the data. To learn the SV regression machine we used 
partly modified software developed by Steve R. Gunn [4].  

The use of an SV machine is a powerful tool to the solution many economic problems. It can 
provide extremely accurate approximating functions for time series models, the solution to the 
problem is global and unique.  
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          c)        d) 
 
Fig. 3: Training results for different kernels, loss functions and σ  of the SV regression (see Tab. 1). 
 



4   Conclusion 
In this paper, we have examined the SVM´s approach to study linear and non-linear models on 

the time series of wages in the Slovak Republic. For the sake of calculating the measure of the 
goodness of fit of the regression model to the data we evaluated five models. One model was based on 
causal regression and for models on the Support Vector Machines methodology. The benchmarking 
was performed between traditional statistical techniques and SVM´s method in regression tasks. The 
SVM´s approach was illustrated on the conventional regression function. As it visually is clear from 
Fig. 3, this problem was readily solved by a SV regression with excellent fit of the SV regression 
models to the data. 
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