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Abstract 

When the radial symmetric projectile works through a very sparse gas of constant 
density with fixed velocity, the friction force can be approximated via Newton’s 
model. This is based on the assumption of the gas flow as independent movement of 
non–interacting mass particles, which hit the projectile shape and change their 
momentum. The absence of particle interactions is in the contradiction to laminar 
and turbulent flow models, which are preferred for dense fluids. Thus the original 
Newton model is only useful for two occasions: motion in low pressure gas and 
generating of good tasks for the calculus of variation. Our paper is oriented to 
various techniques how to obtain the best possible solution of given variation task. 
The role of Matlab environment was in the automation of symbolic computations 
(differentiation, integration), numeric integration (Simpson’s rule), parameter 
optimization (conjugate gradient) and graphical presentation of results (geometry of 
optimum neighborhood, optimum projectile design).  

1 Original Form of Newton’s Model 
When the radial symmetric projectile of radius R and length W works through a very sparse gas of 
density ρ having the velocity v, the friction force can be approximated via Newton’s model [1] as 
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Here y: [0,W] → [0,R] is unknown non–decreasing (projectile profile) function satisfying y(0) = 0, 
y(W) = R and yx is its differentiation. This a little bit naive model is based on the assumption of the gas 
flow as independent movement of non–interacting mass particles, which hit the projectile shape and 
change their momentum. The absence of particle interactions is in the contradiction to laminar and 
turbulent flow models, which are preferred for dense fluids. Thus the original Newton model is only 
useful for two occasions: motion in low pressure gas and generating of good tasks for the calculus of 
variation. 

  

2 Various Approaches to Variational Task 
There are many additional assumptions, which enable to solve the basic variation task [1] 
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It corresponds with the minimum friction force design of given projectile in a sparse gas. The first 
assumption of the continuity and smoothness of y(x), is useful for the traditional solution via calculus 
of variations. Unfortunately, the resulting Euler’s differential equation [1] of the first order 
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has no exact (analytical) solution and the positive value of y(x) is in the contradiction to the condition 
y(0) = 0. Thus, the assumption of continuity and smoothness is probably the main problem of the 
original task.   

The additive condition yx(x) << 1 is a “little bit false” tool for analytical solution of alternative 
variational task [1]    
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The adequate Euler’s equation has analytical solution y*(x) = R(x/W)3/4, but  with yx(x)  >> 1 for small 
x, which is rather illustrative or referential then exact solution of the original task.  

 

Our paper is oriented to various techniques how to obtain the best possible approximate solution of 
given variational task. But we prefer the reformulation of the original functional I1(y) to various but 
equivalent forms, which can have different properties in the process of numeric integration. 

Our first model includes the possible discontinuity of the projectile shape y(x) in the point x = 0. It 
corresponds to the projectile with planar circular toe of radius r < R. The original functional I1(y) can 
be decomposed to a sum of two integrals. Using the Symbolic toolbox in the Matlab environment, we 
simplify the first integral to r2/2 an then reformulate I1(y) to the new form 
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Here, the function y(x) is continuous and smooth everywhere and the radius r of “dummy toe” is also 
subject of optimization.   

When we would like to prevent the problem of discontinuity in the coordinate origin (0,0) otherwise, 
we can invert the function y(x) to x(y). After a few symbolic computations with I1(y), we obtained the 
other but equivalent variational task  
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which has a solution x(y) as non–decreasing continuous function with constrained differentiation xy(y). 
The adequate Euler’s differential equation of the first order has the form 
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The analytical solution is impossible. But we investigated that the optimum solution has a single 
breakpoint at y = r, where the differentiation does not exist. The optimum solution has two parts: 
constant function x(y) = 0 for y ≤ r and smooth increasing function x(y) for y ≥ r.  

To avoid the numerical problems in the numeric integration of non–smooth function x(y), we also 
decompose I4(x) to the sum of two integrals, where the first one is trivial. The last form of variation 
task is expressed as 
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From the numeric point of view, only the functionals I3(y) and I5(x) are the improved equivalents of 
I1(y). The functional I2(y) is not equivalent form but only weak approximation of I1(y). The numeric 
integration of I4(x) via fixed step Simpson’s method has unacceptable error order. 



3 Approximation of Projectile Shape 
The absence of analytical solution is evident for the optimum projectile task. But we can approximate 
the projectile shape via various models and then compare the quality of approximations. The first 
model is only a generalization of the function y*(x) with single free parameter α > 0 in the form    
yA(x) = R(x/W)α  which is useful for the minimization of functional I1(y). The second model is simple 
linear approximation yB(x) = r + (R – r)x/W for the functional I3(y). This model has also a single 
parameter r. The third model xC(y) = W(y – r)/(R – r) is also the linear model but for the functional 
I5(y). These three trivial models are useful for the symbolic computation. The value of I1(yA) can be 
calculated exactly (analytically) for many rational values of parameter α = m/n.  The values of I3(yB) 
and I5(xC) were also analytically calculated in Matlab Symbolic Toolbox as 
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These three models can generate simple tasks for the single parameter minimization (exact or 
numeric). The other three models were created as polynomial extension of previous three ones 

∑

∑

∑

=

=

=

−−+=

−+=

−+=

n

k

k
k

n

k

k
k

n

k

k
k

yRrycyxyx

xWxbxx

xWxaxx

1
CF

1
BE

1
AD

)()()()(

)()(y)(y

)()(y)(y

 

Now we are prepared to follow in the research direction of study [2] and try to find the better formulas 
for the optimum projectile profile. 

4 Numeric Experiments 
All the numeric experiments were performed numerically in the Matlab environment with extended 
models yD, yE, xF and functionals I1, I3, I5 using analytical differentiation but numeric integration by 
Simpson’s method with fixed step for N = 2000. It is not too correct for the functional I1 due to 
possible numeric difficulties near x = 0. The models yA, yB, xC are only special cases of previous ones 
for n = 0. The functionals were numerically minimized via fmincon function from Optimization 
Toolbox for given models and various orders. The numeric results for R = W = 1 are collected in the 
Tab. 1. It is useful to compare the results with trivial analytical values for special cases of projectile 
shape. The worst case of cylindrical profile corresponds to linear model yB with r = 1 and has value 
I3(yB) = ½ = 0.500000000. The conic toe shape corresponds to linear model yB with r = 0 and has 
value I3(yB) = ¼ = 0.250000000, which is significant improvement (that is why the projectile toe is 
useful). The hemispheric shape has the same value of functional I1 as the conic one. The profile y* 
(Fig. 1) which is recommended in [1] is represented by model yA with α = ¾ and has the value I1(yA) 
= 0.220013580. The model yA with α = ½ represents parabolic shape with the better analytic value 
I1(yA) = 0.201013072 and should be easily realized in practice. As seen in the Tab. 1, the best model of 
the class yA has α = 0.462426587 and the value I1(yA) = 0.200705898 with the shape demonstrated on 
the Fig. 2. The best linear model of the class yB has r = 0.381966029 and the value I3(yB) = 
0.200705898 with the shape demonstrated on the Fig. 3. The numerical experiments in [2] 
corresponds to the model yE with r = 0 and has the functional values 0.250000, 0.223355, 0.213719, 
0.208475 for n =0, 1, 2, 3. The new results collected in the Tab. 1 are better then previous ones 
including trivial cases. The final optimum shapes for n = 3 are depicted on the Figs. 4 – 6.  
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Figure 1: Optimum projectile y* 
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Figure 2: Optimum projectile yA 
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Figure 3: Optimum projectile yB or xC respectively 
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Figure 4: Optimum projectile yD 
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Figure 5: Optimum projectile yE (the best included) 
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Figure 6: Optimum projectile xF 



Table 1: QUALITY OF OPTIMUM PROJECTILE SHAPES  

n I1(yD) 

(αopt) 

I3(yE) 

(ropt) 

I5(xF) 

(ropt) 

0 0.200705898 

(0.462426587)

0.190983006 

(0.381966029)

0.190983006 

(0.381966029)

1 0.195440564 

(0.342541303)

0.187804668 

(0.358007030)

0.187593024 

(0.354594021)

2 numeric 

difficulties 

0.187540245 

(0.354064327)

0.187570458 

(0.354301827)

3 numeric 

difficulties 

0.187473556 

(0.352718593)

0.187481221 

(0.352443117)

 

5 Results 
The optimum projectile shape was studied first by Isaac Newton in 1687. This task is a good 
inspiration for effective approximation at present time. We reformulate the original task to avoid 
numerical difficulties during calculations and then we tested various models of projectile shape. Our 
paper is about discontinuity analysis, modeling and parameter optimization. The best included solution 
for R = W = 1 and n = 3 is the model yE with functional value I3(yE) = 0.187473556 and circular planar 
toe of radius r = 0.352718593. The role of Matlab environment was in the automation of symbolic 
computations, numeric integration, parameter optimization and graphical presentation of results. 
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