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Abstract

The paper is concerned with the adaptive wavelet schemes for elliptic opera-
tor equations. The suitable wavelet bases adapted to homogeneous Dirichlet
boundary conditions are constructed and their properties are studied. Numeri-
cal examples are presented for problems with a singular right-hand side.

1 Introduction

Wavelets are by now a widely accepted tool in signal processing as well as in numerical simula-
tion. A function f that is smooth, except at some isolated singularities, typically has a sparse
representation in a wavelet basis, i.e. only a small number of numerically significant wavelet
coefficients carry most of the information on f . This compression property of wavelets led to
design of adaptive wavelet methods for solving operator equations. In recent years adaptive
wavelet methods have been successfully used for solving partial differential as well as integral
equations, both linear and nonlinear. It has been shown that these methods converge and that
they are asymptotically optimal in the sense that storage and number of floating point opera-
tions, needed to resolve the problem with desired accuracy, remain proportional to the problem
size when the resolution of the discretization is refined. Thus, the computational complexity for
all steps of the algorithm is controlled.

Suitable wavelet bases on bounded domains are needed for these methods. They are
usually constructed in the following way: Wavelets on the real line are adapted to the interval and
then by tensor product technique to the n-dimensional cube. Finally by splitting the domain into
not-overlapping subdomains which are images of (0, 1)n under appropriate parametric mappings
one can obtain wavelet bases on a fairly general domain. Therefore, the effectiveness of adaptive
wavelet methods is strongly influenced by the choice of the interval wavelet basis, in particular
by the condition of these bases. In our contribution, we review a construction of spline-wavelet
bases on the interval and its adaptation to homogeneous Dirichlet boundary conditions.

The constructed bases are used in adaptive wavelet methods for solving elliptic partial
differential equations with singular right-hand sides. The computation is carried out in MATLAB
using Wavelet Toolbox.

2 Wavelet bases and wavelet transform

This section provides a short introduction to the concept of wavelet bases. Let V be a separable
Hilbert space with inner product 〈·, ·〉V and induced norm ‖·‖V . Let J be some index set and
let each index λ ∈ J takes the form λ = (j, k), where |λ| = j ∈ Z is scale or level. Assume that
J can be decomposed as J = ∪j≥j0Jj , where j0 ∈ Z is some coarsest level.

Definition 1. Family Ψ := {ψλ ∈ J} ⊂ V is called a wavelet basis of V , if

i) Ψ is a Riesz basis for V , that means Ψ generates V , i.e.

V = clos‖.‖V spanΨ, (1)

and there exist constants c, C ∈ (0,∞) such that for all b := {bλ}λ∈J ∈ l2 (J) holds

c ‖b‖l2(J) ≤

∥

∥

∥

∥

∥

∑

λ∈J

bλψλ

∥

∥

∥

∥

∥

V

≤ C ‖b‖l2(J) . (2)



Constants cψ := sup {c : c satisfies (2)}, Cψ := inf {C : C satisfies (2)} are called Riesz
bounds and Cψ/cψ is called the condition of Ψ.

ii) Basis functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J , where Ωλ is
support of ψλ.

By the Riesz representation theorem, there exists a unique family of dual functions Ψ̃ =
{

ψ̃λ, λ ∈ J̃
}

⊂ V , which are biorthogonal to Ψ, i.e. it holds

〈

ψi,k, ψ̃j,l

〉

V
= δi,jδk,l, for all (i, k) ∈ J, (j, l) ∈ J̃ . (3)

This dual family is also a Riesz basis for V with Riesz bounds C−1, c−1. The pair Ψ, Ψ̃ is often
referred to as biorthogonal system, Ψ is called primal wavelet basis, Ψ̃ is called dual wavelet
basis. By the above argument, biorthogonality is a necessary for the Riesz basis property (2) to
hold. But unfortunately it is not sufficient, see [9].

In many cases, the wavelet system Ψ is constructed with the aid of a multiresolution
analysis.

Definition 2. A sequence S = {Sj}j∈Nj0
of closed linear subspaces Sj ⊂ V is called a multires-

olution or multiscale analysis, if the subspaces are nested, i.e.,

Sj0 ⊂ Sj0+1 ⊂ . . . ⊂ Sj ⊂ Sj+1 ⊂ . . . V (4)

and S is dense in V , i.e.,

closV

(

∪j∈Nj0
Sj

)

= V. (5)

The nestedness of the multiresolution analysis implies the existence of the complement or
wavelet spaces Wj such that

Sj+1 = Sj ⊕Wj . (6)

We now assume that Sj and Wj are spanned by sets of basis functions

Φj := {φj,k, k ∈ Ij} , Ψj := {ψj,k, k ∈ Jj} , (7)

where Ij , Jj are finite or at most countable index sets. We refer to φj,k as scaling functions and

ψj,k as wavelets. The multiscale basis is given by Ψj0,s = Φj0∪
⋃j0+s−1
j=j0

Ψj and the overall wavelet
Riesz basis of V is obtained by Ψ = Φj0∪

⋃

j≥j0
Ψj . From the nestedness of S and the Riesz basis

property (2), we conclude the existence of bounded linear operators Mj,0 =
(

mj,0
l,k

)

l∈Ij+1,k∈Ij

and Mj,1 =
(

mj,1
l,k

)

l∈Ij+1,k∈Jj
such that

φj,k =
∑

l∈Ij+1

mj,0
l,kφj+1,l, ψj,k =

∑

l∈Ij+1

mj,1
l,kφj+1,l. (8)

The desired property in applications is the uniform sparseness of Mj,0 and Mj,1, it means
that the number of nonzero entries per row and column remains uniformly bounded in j. The
single-scale and the multiscale bases are interrelated by Tj,s : l2 (Ij+s) → l2 (Ij+s),

Ψj,s = Tj,sΦj+s. (9)

Tj,s is called the multiscale or the wavelet transform.

The dual wavelet system Ψ̃ generates a dual multiresolution analysis S̃ with a dual scaling
basis Φ̃ and dual operators M̃j,0, M̃j,1.



Polynomial exactness of order N ∈ N for primal scaling basis and of order Ñ ∈ N for dual
scaling basis is another desired property of wavelet bases in V ⊂ L2 (Ω), Ω ⊂ R

n. It means that

PN−1 ⊂ Sj , PÑ−1 ⊂ S̃j , j ≥ j0, (10)

where Pm is the space of all algebraic polynomials on Ω of degree less or equal to m.

3 Construction of wavelet bases with boundary conditions

In this section, we briefly review the construction of stable spline-wavelet basis on the interval
satisfying homogeneous Dirichlet boundary conditions of the first order from [3, 4]. The primal
scaling bases will be the same as bases designed in [1], because they are known to be well-
conditioned. Let N ≥ 3 be the desired order of polynomial exactness of the primal scaling basis
and let tj = (tjk)

2j+N−1
k=−N+1 be a sequence of knots defined by

tjk = 0 for k = −N + 2, . . . , 0,

tjk =
k

2j
for k = 1, . . . , 2j − 1,

tjk = 1 for k = 2j , . . . , 2j +N − 2.

The corresponding B-splines of order N are defined by

Bj
k,N (x) :=

(

tjk+N − tjk

) [

tjk, . . . , t
j
k+N

]

t
(t− x)N−1

+ , x ∈ [0, 1] , (11)

where (x)+ := max {0, x} and [t1, . . . tN ]t f is the N -th divided difference of f . The set Φj of
primal scaling functions is then simply defined as

φj,k = 2j/2Bj
k,N , for k = −N + 2, . . . , 2j − 2, j ≥ 0. (12)

Thus there are 2j−N+1 inner scaling functions andN−2 functions on each boundary. The inner
functions are translations and dilations of a function φ which corresponds to the primal scaling
function constructed by Cohen, Daubechies, Feauveau in [5]. In the following, we consider φ
from [5] which is shifted so that its support is [0, N ]. Figure 3 shows the primal scaling basis
for N = 3 and j = 3.
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Figure 1: The primal scaling basis for N = 3 and j = 3

The desired property of the dual scaling basis Φ̃ is biorthogonality to Φ and polynomial
exactness of order Ñ . Let φ̃ be dual scaling function which was designed in [5] and which is

shifted so that its support is
[

−Ñ + 1, N + Ñ − 1
]

. In this case Ñ ≥ N and Ñ +N must be an

even number. We define inner scaling functions as translations and dilations of φ̃:

θj,k = 2j/2φ̃
(

2j · −k
)

, k = Ñ − 1, . . . 2j −N − Ñ + 1. (13)



There will be two types of basis functions at each boundary. Basis functions of the first
type are defined to preserve polynomial exactness in the same way as in [12]:

θj,k = 2j/2
Ñ−2
∑

l=−N−Ñ+2

〈

pÑ−1
k+N−2, φ (· − l)

〉

φ̃
(

2j · −l
)

|[0,1], k = 2 −N, . . . , Ñ −N + 1. (14)

Here pÑ−1
0 , . . . , pÑ−1

Ñ−1
is a basis of PÑ−1 ([0, 1]). As in [12], pÑ−1

k are Bernstein polynomials

defined by

pÑ−1
k (x) := b−Ñ+1

(

Ñ − 1

k

)

xk (b− x)Ñ−1−k , k = 0, . . . , Ñ − 1, (15)

because they are known to be well-conditioned on [0, b] relative to the supremum norm. In our
numerical experiments the choice b = 10 seems to be optimal.

The basis functions of the second type are defined as

θj,k = 2
j+1

2

N+Ñ−1
∑

l=Ñ−1−2k

h̃lφ̃
(

2j+1 · −2k − l
)

|[0,1], k = Ñ −N + 2, . . . , Ñ − 2, (16)

where h̃l are scaling coefficients corresponding to φ̃.

The boundary functions at the right boundary are defined to be symmetrical with the left
boundary functions:

θj,k = θj,2j−N+1−k (1 − ·) , k = 2j −N − Ñ + 2, . . . , 2j − 2. (17)

Since the set Θj :=
{

θj,k : k = −N + 2, . . . , 2j − 2
}

is not biorthogonal to Φj , we derive

a new set Φ̃j from Θj by biorthogonalization. Let Aj = (〈φj,k, θj,l〉)
2j−2
j,l=−N+2, then viewing Φ̃j

and Θj as column vectors we define
Φ̃j := A−T

j Θj , (18)

assuming that Aj is invertible, which is the case of all choices of N , Ñ in our numerical experi-
ments.

Our next goal is to determine the corresponding wavelets. We follow a general principle
called stable completion which was proposed in [2]. We found the initial stable completion by
the method from [12]. Some of the constructed wavelets are shown in Figure 3. Multivariate
wavelet bases on (0, 1)n can be constructed by tensor product.

The condition of scaling and single-scale wavelet bases can be found in [3]. The other cri-
teria for the effectiveness of wavelet bases is the condition number of the corresponding stiffness
matrix. Here, let us consider the stiffness matrix for the Poisson equation:

Aj0,s =
(〈

ψ′
j,k, ψ

′
l,m

〉)

ψj,k,ψl,m∈Ψj0,s
, (19)

where Ψj0,s = Φj0 ∪
⋃j0+s−1
j=j0

Ψj denotes the multiscale basis. It is well-known that the condition
number of Aj0,s increases quadratically with the matrix size. To remedy this, we use the diagonal
matrix for preconditioning

Aprec
j0,s

= D−1
j0,s

Aj0,sD
−1
j0,s

, Dj0,s = diag
(

〈

ψ′
j,k, ψ

′
j,k

〉1/2
)

ψj,k∈Ψj0,s
. (20)

Condition numbers of resulting matrices are listed in Tables 1 and 2.
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Figure 2: Some quadratic primal wavelets with Ñ = 5 vanishing moments satisfying homoge-
neous Dirichlet boundary conditions of the first order

N Ñ j s M Aprec
j,s N Ñ j s M Aprec

j,s

3 3 3 1 16 12.24 4 4 4 1 33 47.02
3 64 12.72 3 125 49.56
5 256 12.85 5 513 50.17
7 1024 12.86 7 2049 50.28

3 5 4 1 32 52.97 4 6 4 1 33 48.98
3 128 54.88 3 125 49.56
5 512 55.19 5 513 50.17
7 2048 55.24 7 2049 50.28

3 7 4 1 32 71.07 4 8 5 1 65 205.56
3 128 71.86 3 257 208.37
5 512 71.91 5 1025 209.12
7 2048 71.91 7 4097 209.31

Table 1: The condition number of 1D stiffness matrices Aprec
j,s of the size M ×M

4 Adaptive wavelet scheme

In this section, we briefly review adaptive wavelet methods for the elliptic operator equations
similar to the method proposed by Cohen, Dahmen and DeVore in [6, 7, 8]. Our intention is
to show the dependence of the effectiveness of these methods on the condition of wavelet bases
and to identify the routines which will be used in numerical examples.

Let H be a real Hilbert space with the inner product 〈·, ·〉H and the induced norm ‖·‖H .
Let A : H → H ′ be the selfadjoint and H-elliptic operator, i.e.

a (v, w) := 〈Av,w〉 . ‖v‖H ‖w‖H and a (v, v) ∼ ‖v‖2
H . (21)

By the Lax-Milgram theorem, A is an isomorphism from H to H ′, i.e. there exist positive
constants cA and CA such that

cA ‖v‖H ≤ ‖Av‖H′ ≤ CA ‖v‖H , v ∈ H. (22)



N Ñ j s M Aprec
j,s

3 3 3 1 256 62
2 1024 94
3 4096 132
4 16384 172

3 5 4 1 1024 99
2 4096 295
3 16384 557
4 65536 929

4 4 4 1 1024 933
2 4096 1035
3 16384 1749
4 65536 2792

Table 2: The condition number of 2D stiffness matrices Aprec
j,s of the size M ×M

Therefore, the equation
Au = f (23)

has for any f ∈ H ′ a unique solution. If (22) holds, then (23) is called well-posed (on H).
Typical examples are second order elliptic boundary value problems with homogeneous Dirichlet
boundary conditions on some open domain Ω ⊂ R

d. In this case H = H1
0 (Ω) and H ′ = H−1 (Ω).

Other examples are singular integral equations on the boundary ∂Ω with H = H−1/2 (∂Ω),
H ′ = H1/2 (∂Ω).

Thus H is typically a Sobolev space. In the following, we assume that

H ⊂ L2 ⊂ H ′ or H ′ ⊂ L2 ⊂ H. (24)

We assume that D−tΨ is a wavelet basis in the energy space H. Thus, we have

cψ ‖v‖l2 ≤
∥

∥vTD−tΨ
∥

∥

H
≤ Cψ ‖v‖l2 , v ∈ l2 (J ) , (25)

where cψ > 0. Then the original equation (23) can be reformulated as an equivalent biinfinite
matrix equation

Au = f , (26)

where A = D−t 〈AΨ,Ψ〉D−t is a diagonally preconditioned stiffness matrix, u = uTD−tΨ and
f = D−t 〈f,Ψ〉. The following theorem from [11] will be crucial in what follows.

Theorem 3. Under the above assumptions, u solves (23) if and only if u solves the matrix
equation (26). Moreover, the matrix A satisfies

‖A‖l2 ,
∥

∥A−1
∥

∥

l2
≤
C2
ψCA

c2ψcA
< +∞. (27)

As an immediate consequence there exists a finite number κ such that all finite sections

AΛ := D−t 〈AΨΛ,ΨΛ〉D
−t, ΨΛ := {ψλ, λ ∈ Λ} , Λ ⊂ J , (28)

have uniformly bounded condition numbers

κ (AΛ) ≤
C2
ψCA

c2ψcA
, Λ ⊂ J . (29)



Thus the original problem is equivalent to the well-posed problem in l2.

While the classical adaptive methods uses refining and derefining step by step a given
mesh according to a-posteriori local error indicators, the wavelet approach is somewhat different
and follows a paradigm which comprises the following steps:

1. One starts with a variational formulation but instead of turning to a finite dimensional
approximation, using the suitable wavelet basis the continuous problem is transformed
into an infinite-dimensional l2-problem, which is well-conditioned.

2. One then tries to devise a convergent iteration for the l2-problem.

3. Finally, one derives a practicle version of this idealized iteration. All infinite-dimen-sional
quantities have to be replaced by finitely supported ones and the routine for the application
of the biinfinite-dimensional matrix A approximately have to be designed.

The simplest convergent iteration for the l2-problem is a Richardson iteration which has
the following form:

u0 := 0, un+1 := un + ω (f − Aun) , n = 0, 1, . . . . (30)

For the convergence, the relaxation parameter ω has to satisfy

ρ := ‖I − ωA‖L(l2) < 1. (31)

Then the iteration (30) convergence with an error reduction per step

‖un+1 − u‖l2 ≤ ρ ‖un − u‖l2 . (32)

In the case that A is symmetric and positive definite, then (31) is satisfied if

0 < ω <
2

λmax
, (33)

where λmax is the largest eigenvalue of A. It is known that the optimal relaxation parameter is
given by

ω̂ =
2

λmin + λmax
, (34)

where λmin is the smallest eigenvalue of A. For ω̂ the estimate of the error reduction can be
computed as

ρ (ω̂) =
λmax − λmin
λmax + λmin

=
κ (A) − 1

κ (A) + 1
= 1 −

1

κ (A) + 1
≤ 1 −

1
C2
ψ
CA

c2
ψ
cA

+ 1
. (35)

We use the following implementable version of the ideal iteration (30). It was proved that
such an algorithm converge and is asymptotically optimal.

Algorithm 4. SOLVE [A, f, ǫ] → uǫ

Let θ < 1/3 and K ∈ N be fixed such that 3ρK < θ.

1. Set j := 0, u0 := 0, ǫ0 :=
∥

∥A−1
∥

∥

L(l2)
‖f‖l2.

2. While ǫj > ǫ do

j := j + 1,

ǫj := 3ρKǫj−1/θ,



fj := RHS[f ,
θǫj

6ωK ],

z0 := ui−1,

For l = 1, . . . ,K do

zl := zl−1 + ω
(

fj − APPLY[A, zl−1,
θǫj

6ωK ]
)

,

end for,

uj := COARSE[zK , (1 − θ) ǫj ],

end while,

uǫ := uj.

For the subroutines RHS, APPLY, and COARSE we refer to [7].

5 Numerical examples

In this section, our intention is to show that the adaptive wavelet method with our bases realizes
the optimal convergence rate.

Example 5. As a test example we consider the Poisson equation

−u′′ = f in Ω = (0, 1) , u (0) = u (1) = 0 (36)

with the functional f defined by

f (v) = 4v

(

1

2

)

− 2

∫ 1

0
v (x) dx. (37)

Then the solution u is given by

u (x) = x (1 − x) + 2x2 x ∈ [0, 0.5) (38)

= x (1 − x) + 2 (1 − x)2 x ∈ [0.5, 1] .

Let us define

A = D−1
〈

Ψ′,Ψ′
〉

D−1, f = D−1 〈f,Ψ〉 , D = diag
(

〈

ψ′
j,k, ψ

′
j,k

〉1/2
)

ψj,k∈Ψ
. (39)

Then the variational formulation of (36) is equivalent to

AU = f (40)

and the solution u is given by u = UD−1Ψ. We solve the infinite dimensional problem (40) by
means of the routine SOLVE.

The solution u has a limited Sobolev regularity, u ∈ Hs (Ω) ∩ H1
0 (Ω) only for s < 1.5.

Thus the linear methods can only converge with limited order. On the other hand, it can be
shown that u ∈ Bs+1

τ (Lτ (Ω)) for any positive s and τ = (s+ 0.5)−1. Therefore, we have

‖u − uk‖l2 ≤ C (# supp uk)
−n , (41)

where uk is the k-th approximate iteration. The rate of convergence n is limited only by the
polynomial exactness of underlying wavelet bases. It can be shown that in our case relation (41)
holds for any n < N − 1. Figure 3 shows a logarithmic plot of the realized convergence rate for
the spline-wavelet bases designed in this contribution with N = 3, Ñ = 3 and N = 4, Ñ = 4.
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Figure 3: The l2 norm of the residual rk = f − AUk versus the number of degrees of freedom

Figure 4: The right-hand side of the equation (42)

Example 6. Now, we consider two-dimensional Poisson equation

−∆u = f, in Ω = (0, 1)2 , ∂Ω = 0, (42)

with the singular right-hand side, see Figure 4.

We use the above adaptive wavelet scheme and the quadratic wavelet basis with Ñ = 5.
It can be shown that in this case relation (41) holds for any n < 1. A logarithmic plot of the
realized convergence rate is shown in Figure 5.
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Figure 5: The l2 norm of the residual rk = f − AUk versus the number of degrees of freedom
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