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Abstract

This paper deals with real-time implementation of Model Predictive Control
(MPC) of a laboratory liquid tanks system using the dSPACE platform. The
MPC problem is solved using parametric programming techniques, which al-
low closed-form solution to the underlying optimization problem to be obtained
off-line in a form of a look-up table. Once such a table is calculated, the sub-
sequent implementation reduces to a simple set-membership test, which can be
performed very efficiently on-line. In the paper we present a step-by-step de-
scription of all steps leading towards the derivation and implementation of such
a controller for a laboratory device.

1 Introduction

This paper deals with real-time implementation of Model Predictive Control (MPC) of a labora-
tory liquid tanks system. In MPC [4] the control objectives are translated into an optimization
problem, which is formulated over a finite prediction horizon. The result of the optimization
is a sequence of optimal control moves which drives the system states (or outputs) towards a
given reference while respecting system constraints (such as upper and lower limits on the tanks’
levels) and minimizing a selected performance criterion (e.g. the regulation error). Tradition-
ally MPC is implemented in a so-called Receding Horizon fashion, where the optimal control
problem is re-solved at every time instance for a new value of the measured initial conditions.
This induces a significant computational load at each sampling time, which might be prohibitive
if not enough computational power is available, or if the sampling time is too short. To ease
the computational demands at each step we show that if the underlying optimization problem
is solved using parametric programming techniques [1, 2], the resulting optimal MPC feedback
law takes a form of a look-up table. Implementation of such a table can be done very efficiently
on-line, as the evaluation of the feedback law involves only matrix multiplications, additions,
and logic comparisons. Therefore the implementation can be done much faster compared to
traditional on-line MPC techniques.

Motivated by these upsides, in this paper we show how parametric MPC can be synthesized
and applied to control a laboratory liquid tanks system. The plant consists of two interconnected
tanks. The control objective is manipulate the pump in such a way that the level of the lower tank
tracks a prescribed reference signal. In the paper we show how to synthesize a parametric solution
to the MPC problem using the Multi-Parametric Toolbox (MPT) [3]. First, we introduce the
plant itself and derive its corresponding mathematical model. Then, we show which commands
have to be used to set up the MPC problem and solve it using MPT. We show that once the
parametric MPC controller is calculated in Matlab, it can be directly embedded into a Simulink
scheme where it acts as a C-coded S-function. The controller code is written in a way such that
the Real-Time Workshop can be used to compile and download the controller evaluation code
directly into a control platform. In our setup we have used the dSPACE setup which provides
input/output interfaces to our laboratory plant and is also capable of running the controller
code in real-time. A state observer is used to compensate the lacks of measurements of certain
signals.
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Figure 1: The laboratory liquid tanks equipment.

2 Physical Setup

The laboratory liquid tanks device, as depicted in Figure 1, is comprised of two pairs of inter-
connected tanks. Each pair consists of two glass tanks of circular cross-section, with liquid inlet
situated on the top of the upper tank. The upper and lower tanks are connected by a small
opening, which allows the liquid from the upper tank to flow into the lower tank by forces of
gravity. Another opening is located at the bottom of the lower tanks and the outflowing liquid
is captured in a reservoir at the bottom of the device. A pump then remits the liquid back to
the top of the upper tanks. The height of the tanks is 310 mm, the tank diameter is 50 mm,
and the diameter of each opening is 4 mm. In this work we only consider control of the left pair
of the tanks.

The liquid levels in the lower tanks is measured by pressure sensors, which automatically
convert the measurements into a voltage signal. The pumps can also be controlled by a voltage
signal, which is proportional to the throughput of the pumps. The input and output signals
are wired to a dSPACE DS 1104 1/0O card, which provides an interface between the plant and
Matlab. The voltage signals are connected to the I/O card by means of BNC connectors.

As the experimental device provides voltage signals in the range of [-10 V, 10 V] for
each of the physical quantities, the following relation could be used to convert the pump voltage
signal gy, i.e. the value in volts, into the corresponding quantity expressed in cm3s~! units:

Gem3s-1) = 0.0114q}y) — 0.4327¢7%;) + 5.3468¢y] — 0.5778 (1)

Similar formula relates the actual tank level Ay, expressed in centimeters, and the voltage
signal from the level sensor hpy:

h[V] = 0.3676h[cm] —0.8941 (2)

The mathematical model of the left tank pair can be captured by a set of two differential
equation of the following form:

F% R (3)

dh
F=2 = kvl —kv/hs. (4)

dt



Here, F' = 12.566 cm? denotes the cross-sectional area of the tanks, h; and ho denote, respec-
tively, the liquid levels in the upper and lower tank, qq is the liquid inflow, and k = 3.667 cm?®s~!
is a constant representing the resistance of the openings connecting the tanks. By linearizing (3)—
(4) around steady-state values hj = h? = 21.44 cm and ¢§ = 16.9811 cm3s™!, the following
state-space model can be derived:

= Ax+ Bu, (5)
= (o, (6)

where x = [(h1 — h3), (ha —h3)]T is the state vector, u = go — ¢ is the input, and y = hy — h§ is
the measured output. Based on the steady state values mentioned above, the numerical values
of matrices A and B are given by

k
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2F/hs =

A= A k , B= <€> (7)
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This linear state-space representation can then be used to find a closed-form representation of
the MPC feedback law by using techniques of parametric programming as described in the next
section.

3 Model Predictive Control

In model predictive control, the optimal control actions are found by optimizing for the pre-
dicted plant behavior while taking process constraints into account. This is usually achieved by
formulating and solving an optimization problem where a given performance criterion is mini-
mized subject to the constraints. A model of the plant is employed as an additional constraint
to capture the process evolution in time. If the plant model is given as a discrete-time linear
state-space model, the following Constrained Finite Time Optimal Control (CFTOC) problem
could be used to solve for the optimal control inputs:

N-1

i, 2 B+ Q0 vl (s0)
s.t. x9 = x(0) (8b)

Thtl1 = Axy + Buy (8C)

yr = Cuy, (8d)

rp€X (8e)

Y €Y (8f)

up €U. (8g)

Here, p denotes a matrix norm (either p = 1, p = 2, or p = 00), the integer N < oo represents the
prediction horizon, and R and @) are weighting matrices used to tune performance of the MPC
controller. The linear model in (8c) serves to predict the future states based on the knowledge
of the initial state x(0), which is assumed to be measured. The optimization is performed over
the increments Auy to provide an offset-free tracking of the reference trajectory ... The state,
output, and input constraints are represented, respectively, by the polyhedral sets X', ), and U.

MPC is usually implemented in the so-called receding horizon fashion. Here, the optimal
solution to the CFTOC problem (8) is found for a particular value of z(0), which results into
the optimal sequence [Aug, ..., Au}_,]. Out of this sequence, only the first element (i.e. Au)
is actually implemented to the plant and the rest is discarded. At the next time instance, a new
initial state measurements x(0) is obtained and the whole procedure is repeated. This repetitive
optimization is performed in order to introduce feedback into the whole procedure and to deal
with possible disturbances and plant-model mismatches.



If the initial state x(0) and the value of the reference signal y.f are both known, the
CFTOC problem (8) can be solved either as a quadratic program (QP) for p = 2, or as a linear
program (LP) for p =1 and p = oo. Even though efficient polynomial-time algorithms exist to
solve both types of problems, the time needed to perform the optimization can be prohibitive
if the sampling time is too short, or if the implementation hardware is very simple and thus
less capable. To address this issue, in their seminal work [1] the authors have shown (for a
quadratic type of performance indices) how to solve the CFTOC problem (8) parametrically for
all admissible initial conditions z(0) by employing techniques of parametric programming. In this
approach the optimal solution to (8) is found as an explicit state-feedback law parameterized in
the initial condition z(0). The advantage of the parametric solutions is that the optimal control
input can be obtained in real-time by simply evaluating a look-up table. The main result of the
parametric approach is summarized by the following theorem.

Theorem 3.1 (Explicit solution to the CFTOC problem (8) [2]) The optimal solution to
the CFTOC problem (8) is a piecewise affine function of the initial state x(0)

Al = Foz(0) + Gy if 2(0) € R, (9)

where R, = {x(0) | Hyz(0) < K, } is a set of polytopic regions, and F, and G, are the matrices
of the affine state-feedback law active in the r-th region.

Theorem 3.1 shows that the optimal solution to the CFTOC problem (8) can be found as a
look-up table consisting of r components. Therefore, once the table is calculated, MPC can be
implemented in real time by simply evaluating the table for the actual measurements of x(0).
The table can be calculated efficiently using e.g. the Multi-Parametric Toolbox [3]. Performance
of the MPC scheme can be tuned by appropriately adjusting the weighting matrices (Q and R,
and by a suitable choice of the prediction horizon N.

4 Results

In this section we show how MPC could be used for control of the laboratory liquid tanks
equipment described in Section 3. The control objective is to drive the level in the lower tank
to a time varying reference signal y,.f while respecting flow constraints 0 < ¢g < 20 cm3s™!
and level bounds 0 < hy 2 < 31 cm. The control synthesis using the Multi-Parametric Toolbox
begins with a definition of the prediction model:

>> A = [-0.0315, 0; 0.0315, -0.0315]; B = [0.0769; 0]; C = [1, 0]; D = 0;
>> tanks = ss(A, B, C, D);

>> Ts = b;

>> model = mpt_sys(tanks, Ts);

Here, we have first defined the linear state-space model (5)—(6) as a state-space object using
the Control Toolbox. Subsequently, the ss object was converted to MPT’s native discrete-time
format using the sampling time T = 5 seconds. Input, output, and state constraints can now
be directly added to the model variable:

>> qOmax = 20; qOmin = 0; qO0s = 16.9811;
>> himax = 31; himin = 0; hls = 21.44,;
>> h2max = 31; h2min = 0; h2s = 21.44;

>> model.umax = qOmax - qO0s;
>> model.umin = qOmin - qO0s;
[himax - hils; h2max - h2s];
[himin - hils; h2min - h2s];
h2max - h2s;
h2min - h2s;

>> model.xmax

>> model.xmin

>> model.ymax

>> model.ymin
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Figure 2: Simulink scheme for real-time experiments.

Once the model is complete, parameters of the MPC problem to be solved could be defined by

>> problem.R = 1;

>> problem.Q = eye(2);
>> problem.Qy = 10;

>> problem.norm = 2;

>> problem.N = 6;

>> problem.tracking = 1;

Here, problem.norm=2 denotes that we would like to use a quadratic performance objective
(i.e. to use p =2 in (8a)), problem.N defines the prediction horizon, and problem.tracking=1
specifies, that we would like the MPC controller to track a reference signal y.f, but its value
is not known yet. Finally, the closed-form solution to the MPC problem (8) can be found
parametrically for all feasible initial states x(0) as a look-up table by the following command:

>> controller = mpt_control(model, problem) ;

Upon calling this command, MPT will solve the CFTOC problem (8) parametrically according
to Theorem 3.1 and provide the regions R, and the corresponding feedback laws F}., G, as the
solution.

The generated controller object can then be directly employed in a Simulink scheme for
simulations and real-time experiments. To do so, all that needs to be done is to use the MPT
Controller block provided by the Multi-Parametric Toolbox in the respective Simulink diagram.
The block allows state measurements and the value of the reference signal to be connected
directly into the block. The look-up table processing is encoded as an S-function written in
C, which allows Real-Time Workshop to compile such a block and download it to real-time
processing platform, such as dSPACE. The Simulink scheme used for our real-time experiments
is shown in Figure 2. As MPC is a state-feedback strategy, all system states have to be known
in order to evaluate the optimal control action from the look-up table (9). In our case, however,
the physical device is only capable of measuring the liquid level in the lower of the two tanks.
Therefore we have employed a Kalman filter to obtain estimates of h; based on the measurements
of hg (cf. the Odhad_stavu block in Fig. 2). The u-h and g-u block, denote, respectively, the
correlation formulas (2) and (1) used to convert values represented in volts to/from the respective
physical quantities.

In Figure 3 we provide the simulation results obtained by running the explicit MPC con-
troller in connection with a model of the plant in Simulink. It can be observed how predictions
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Figure 3: Simulation results.

are utilized by the MPC scheme. Specifically, notice that the controller starts to decrease the
control effort even before the reference signal is reached around the time of 230 seconds.

The real-time implementation of the resulting explicit MPC feedback law can then be
done by a simple single-click action, where the Simulink diagram is compiled and automatically
downloaded to the dSPACE card for execution. The DSP processor located on the card then
executes the look-up table (9) in real-time as a sequence of search operations. In Figure 4 we
present the real data measurements obtained during a real-time experiment. Again, it can be
nicely seen from Fig. 4 that the MPC controller utilizes the predictions to change the value of
the input signal in advance, such that output is steered towards the time-varying reference. The
reference tracking error is attributed to two reasons. First, the MPC design is based on a linear
model of the plant, which is only accurate in a close neighborhood of the linearization point.
Another reason being that a state observer is utilized to get estimates of the state vector.

5 Conclusions

In this paper we have presented how to design an MPC strategy to control a laboratory lig-
uid tanks model. The MPC optimization problem is solved parametrically using the Multi-
Parametric Toolbox. The solution, which takes a form of a look-up table, can be easily imple-
mented on the dSPACE real-time control platform.
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