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Abstract

In our contribution, we compute new edge wavelet filters for image compression

and we compare errors for several image compression techniques. Our numerical

experiments confirm the theoretical assumption that the error of the compression

is smaller for the discrete wavelet transform with derived edge filters than for

other methods using an extension of an image.

1 Introduction

Compression is important both for speed of transmission and efficiency of the storage of an image.
A wavelet-based image compression has several advantages over an image compression using
discrete cosine transform. It avoids blocking artifacts, it enables to achieve smaller compressed
size for given quality and it facilitates progressive transmission of images.

A typical lossy wavelet image compression system consists of: discrete wavelet transform
of the input image, thresholding and quantization of wavelet coefficients and entropy encoding.
Originally, the discrete wavelet transform was designed for an infinite input data. However,
images are usually defined over a rectangle. Therefore, applying the discrete wavelet transform
directly leads to the artifacts near the boundary. There are several methods to handle this
problem. They insist in padding of the image and applying discrete wavelet transform to the
extended image: zero-padding (zpd), symmetrization (sym), antisymmetric padding (asym),
smooth padding of order 0 or 1 (sp0, sp1), periodic-padding (ppd), wavelet periodization (per).
An alternative approach insists in using the discrete wavelet transform directly but using special
filters near the boundary (edge).

In our contribution, we compute new edge wavelet filters for image compression and we
compare errors for several image compression techniques. Our numerical experiments confirm
the theoretical assumption that the error of the compression is smaller for the discrete wavelet
transform with derived edge filters than for other methods using an extension of an image.

2 Discrete wavelet transform

Wavelet transforms use a pair of biorthogonal functions ψ, ψ̃ ∈ L2(R) and their dilated and
shifted versions to analyze data. Biorthogonality means that

〈
ψ (· − k) , ψ̃ (· − l)

〉
= δkl, k, l ∈ Z, (1)

where 〈·, ·〉 denotes an inner product in L2(R). The function ψ is called a primal wavelet and ψ̃
is a dual wavelet. Wavelets are associated with scaling functions φ, φ̃ ∈ L2(R). Scaling functions
usually serve to represent a smooth part of data and they are obtained as a solution of scaling
equations

φ(x) =
∑

k

hkφ(2x− k), φ̃(x) =
∑

k

h̃kφ̃(2x− k), (2)

coefficients hk and h̃k are called primal and dual scaling coefficients or filters, respectively.

One of these wavelets is used to decompose the signal and the second one to reconstruct
it. The numbers M , N of scaling coefficients for the scaling function φ and its dual φ̃ may differ.



We want to create a biorthogonal system and therefore we require that

∑

k

hkh̃k+2l =

{
2 if l = 0
0 otherwise.

(3)

Then wavelets can be determined by wavelet equations as follows

ψ(x) =

N−1∑

k=0

(−1)kh̃N−1−kφ(2x− k) (4)

and

ψ̃(x) =

M−1∑

k=0

(−1)khM−1−kφ̃(2x− k). (5)

If f ∈ L2(R), and if we denote scaling coefficients of function f by yj,k, and wavelet
coefficients of function f by xj,k then

xj,k := 〈f, ψj,k〉 =

∫

R

f(x)ψj,k(x) dx, (6)

yj,k := 〈f, φj,k〉 =

∫

R

f(x)φj,k(x) dx, (7)

where φj,k := 2j/2φ
(
2j · −k

)
and φ̃j,k := 2j/2φ̃

(
2j · −k

)
. Thus the decomposition algorithm is

achieved as follows

xj,k =
1√
2

∑

l

(−1)l h1−l yj+1,2k+l (8)

and

yj,k =
1√
2

∑

l

hl yj+1,2k+l. (9)

This decomposition algorithm forms the first half of the discrete wavelet transform.

The reconstruction algorithms for the discrete wavelet transform is defined in this way

yl+1,k =
1√
2

∑

m

h̃m−2kyl,m+(−1)mh̃1−m−2kxl,m. (10)

The discrete wavelet transform is also computationally very efficient, requiring only O(n) oper-
ations, where n is the number of processed data.

The above DWT algorithm can be easily extended to any dimension by tensor products of a
scaling function φ and a wavelet ψ. For instance, the two-dimensional biorthogonal algorithm is
based on separate variables leading to prioritizing of horizontal, vertical and diagonal directions.

We define scaling function by φ(x, y) = φ(x)φ(y) and three wavelets by

• vertical wavelets: ψ1(x, y) = φ(x)ψ(y),

• horizontal wavelets: ψ2(x, y) = ψ(x)φ(y),

• diagonal wavelets: ψ3(x, y) = ψ(x)ψ(y).

It leads to one scaling and three wavelet sub-images at each resolution level. Then the part of
decomposition algorithms is performed hereby

yj,k,l =
1√
2

∑

m

∑

n

hm hn yj+1,2k+m,2l+n. (11)



Other part of the discrete biorthogonal wavelet transform are accomplished in a similar way.
As an example, Figure 1 displays a 512 × 512 RGB image, each pixel quantized on 8 bits, i.e.
256 possible intensity levels for red, green and blue colour. A decomposition of the image on
two levels is shown also in Figure 1. The coefficients of the coarsest approximation appear as
a simplified version of the picture in the upper left corner. The rest of the array contains the
absolute values of wavelet coefficients. Note that many of them are black, it means that they
are close to (0, 0, 0), and that we have mostly sparse representation, except near the edges.
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Figure 1: Image of a boat and its two-level decomposition.

3 Boundary artifact reduction

Until now, only wavelets over the real line have been mentioned, e.g. wavelets suitable to the
analysis of signals defined over the whole line. However in most cases, we are working on compact
intervals. Signals have finite support and images are usually defined over a rectangle. So we
need to adapt wavelets from the real line to the compact interval. There are several methods to
handle this problem. For instance:

• Zero-padding (zpd): This method assumes that the signal is zero outside the original
support. The disadvantage of zero-padding is that discontinuities are artificially created
at the boundary.

• Symmetrization (sym): This method assumes that signals or images can be recovered
outside their original support by symmetric boundary value replication. Symmetrization
has the disadvantage of artificially creating discontinuities of the first derivative at the
border, but this method works well in general for images.

• Antisymmetric padding (asym): This method assumes that signals or images can be re-
covered outside their original support by antisymmetric boundary value replication.

• Smooth padding of order 1 (sp1) This method assumes that signals or images can be
recovered outside their original support by a simple first-order derivative extrapolation:
padding using a linear extension fit to the first two and last two values. Smooth padding
works well in general for smooth functions.

• Smooth padding of order 0 (sp0): This method assumes that signals or images can be
recovered outside their original support by a simple constant extrapolation. For a signal
extension this is the repetition of the first value on the left and last value on the right.

• Periodic-padding (ppd): This method assumes that signals or images can be recovered
outside their original support by periodic extension. The disadvantage of periodic padding
is that discontinuities are artificially created at the border.



• Wavelet periodization (per): Wavelets supported completely inside the interval remain
unchanged. Wavelets overlapping the boundary are divided into two pieces located at the
left and right edges of the interval. This construction leads to large wavelet coefficients at
the boundaries in the case that the periodized signal is not continuous.

• Edge wavelets (edge): Special edge wavelets are constructed to handle boundary effects
explicitly. They are usually constructed by the method of stable completion [2] or by the
lifting scheme [11]. However, it is a delicate task to design appropriate edge wavelets.
None the less this approach is usually superior to others, because it does not assume the
smoothness of the function nor the smoothness of its derivatives.

4 Edge biorthogonal filters

We derive edge filters corresponding to biorthogonal 3/5 filters from [5]:

h =
1

4
(1, 3, 3, 1) ,

h̃ =
1

4
(−5, 15, 19,−97,−26, 350, 350,−26,−97, 19, 15,−5) ,

g =
1

4
(−5,−15, 19, 97,−26,−350, 350, 26,−97,−19, 15, 5) ,

g̃ =
1

4
(−1, 3,−3, 1) .

We use scaling functions and wavelets on the interval designed in [4]. The primal edge scaling
filters h1 and h2 can be computed by solving the system:

P1 =

(
h1

h2

)
P2, (12)

where

P1 =

(
φ0,−2 (0) φ0,−2 (1) φ0,−2 (2) φ0,−2 (3)
φ0,−1 (0) φ0,−1 (1) φ0,−2 (2) φ0,−1 (3)

)
(13)

and

P2 =




φ1,−2 (0) φ1,−2 (1) φ1,−2 (2) φ1,−2 (3)
φ1,−1 (0) φ1,−1 (1) φ1,−1 (2) φ1,−1 (3)

...
...

φ1,2 (0) φ1,2 (1) φ1,2 (2) φ1,2 (3)


 , (14)

where φj,k are scaling functions from [4]. We obtain

MT
L =

(
h1

h2

)
=

(
1 0.5 0 0 0 0
0 0.5 0.75 0.25 0 0

)
. (15)

Let Φj and Φ̃j denote the interval primal and dual scaling basis at the scale j, respectively.
There exist refinement matrices Mj,0 and Mj,1 such that

Φj = MT
j,0Φj+1, Φ̃j = MT

j,1Φ̃j+1. (16)

Due to the length of support of primal scaling functions, the refinement matrix Mj,0 has the
following structure:

Mj,0 =
1√
2




ML

Aj

MR



, (17)



where Aj is a
(
2j+1 − 2

)
×

(
2j − 2

)
matrix given by

(Aj)m,n = hm+1−2n, n = 1, . . . , 2j − 2, 0 ≤ m+ 1 − 2n ≤ 3, (18)

= 0, otherwise.

To compute the refinement matrix corresponding to the dual scaling functions, we need
to identify first the structure of refinement matrices MΘ

j,0 corresponding to Θ.

MΘ
j,0 =

1√
2




MΘ
L

Ãj

MΘ
R



, (19)

where MΘ
L and MΘ

R are blocks 16 × 6 and Ãj is a matrix of the size
(
2j+1 − 10

)
×

(
2j − 10

)

given by (
Ãj

)

m,n
= h̃m−2n, 0 ≤ m− 2n ≤ 11. (20)

The receipt for the computation of the dual edge scaling filters is Lemma 3.1 from [6] and the
definition dual scaling functions from [4]. The results are given in Table 1.

Our next goal is to determine the corresponding edge wavelet filters. We follow a general
principle called stable completion which was proposed in [2].

Definition 1. Any Mj,1 : l2 (Jj) → l2 (Ij+1) is called a stable completion of Mj,0, if

‖Mj‖ ,
∥∥∥M−1

j

∥∥∥ = O (1) , j → ∞, (21)

where Mj := (Mj,0,Mj,1).

The idea is to determine first an initial stable completion and then to project it to the
desired complement space. This is summarized in the following theorem [2].

Theorem 2. Let Φj and Φ̃j be primal and dual scaling basis, respectively. Let Mj,0 and M̃j,0 be
refinement matrices corresponding to these bases. Suppose that M̌j,1 is some stable completion
of Mj,0 and Ǧj = M̌−1

j . Then

Mj,1 :=
(
I − Mj,0M̃

T
j,0

)
M̌j,1 (22)

is also a stable completion and Gj = M−1
j has the form

Gj =

(
M̃T

j,0

Ǧj,1

)
. (23)

Moreover, the collections
Ψj := MT

j,1Φj+1, Ψ̃j := ǦT
j,1Φ̃j+1 (24)

form biorthogonal systems

〈
Ψj , Ψ̃j

〉
= I,

〈
Φj , Ψ̃j

〉
=

〈
Ψj , Φ̃j

〉
= 0. (25)



h̃1 h̃2 h̃3

1.076681594556 −0.286738824456 0.092026650437
0.675063935593 0.573477648963 −0.184053300905

−0.355093741418 1.384958722225 −0.114782451680
−0.284846646838 0.355022784773 0.712453956922

0.326444989466 −0.686029696258 1.086876489964
0.230298713532 −0.391937987767 0.373645360512

−0.336268052254 0.632600808632 −0.762375368071
−0.008536973303 −0.035958766331 0.079313532709

0.129052427572 −0.187126019980 0.189053675945
−0.025278310555 0.036653550306 −0.042726257895
−0.019956560965 0.028937013399 −0.022828088348

0.006652186988 −0.009645671133 0.007609362783

h̃4 h̃5 h̃6

−0.029858563030 0.006382699501 −0.000583175059
0.059717126076 −0.012765399005 0.001166350119
0.020094926444 −0.003539406954 0.000392479032

−0.179719031518 0.036149018881 −0.003510137334
−0.032886047243 0.002296778426 −0.000642305610

0.617720309841 −0.111797984967 0.012064849802
1.310049183710 −0.214468356338 0.078067479536

−0.093568183916 0.976502245490 −0.269754682401
−0.367082460662 1.007183979711 −0.078985111774

0.071902750027 −0.079736069772 0.968151902990
0.056765328968 −0.274180234578 0.967856250235

−0.018921776323 0.054564933339 −0.072185098408
0 0.041432037960 −0.267927178809
0 −0.013810679320 0.052480581416
0 0 0.041432037960
0 0 −0.013810679320

Table 1: Dual edge scaling filters for biorthogonal 3/5 wavelets.

To find the initial stable completion we use some ideas from [6], [8]. By a suitable elimi-
nation of the matrix Aj we will successively reduce the upper and lower bands from Aj . The
elimination matrices are of the form

H
(2i−1)
j := diag (Ii−1,U2i−1, . . . ,U2i−1, I2) , (26)

H
(2i)
j := diag (I3−i,L2i, . . . ,L2i, Ii−1) , (27)

where

Ui+1 :=


1 − h

(i)
⌈i/2⌉

h
(i)
⌈i/2⌉+1

0 1


 , Li+1 :=




1 0

− h
(i)
3−⌊i/2⌋

h
(i)
3−⌊i/2⌋−1

1


 . (28)

We define
A

(i)
j := H

(i)
j A

(i−1)
j . (29)



After 3 elimination steps we obtain the matrix A
(3)
j which looks as follows

A
(3)
j = HjAj =




0 0 0
0 0
b 0
0 0
0 b
... 0

. . .
b

0 0




, where Hj := H
(3)
j . . .H

(1)
j , (30)

with b = 2
3 . We define

Bj :=
(
A

(3)
j

)−1
=




0 0 b−1 0 0 0 . . . 0
0 0 0 0 b−1 0 . . . 0

. . .

b−1 0


 (31)

and

Fj :=




0 0
1 0
0 0
0 1
... 0

. . .

1
0
0




(32)

Then, we have
BjFj = 0. (33)

After these preparations we define extended versions of the matrices Hj , Aj , A
(3)
j , and Bj by

Ĥj :=




I2

Hj

I2


 , Â

(3)
j :=




I2

A
(3)
j

I2


 , (34)

Âj :=




I2

Aj

I2


 , B̂T

j :=




I2

BT
j

I2


 . (35)

Note that Ĥj , Âj , Â
(3)
j , and B̂j are all matrices of the size (#Ij+1) × (#Ij). Hence, the

completion of Â
(3)
j has to be a (#Ij+1) × 2j . We define an expanded version of Fj as follows:

F̂j :=
√

2




O

1

Fj

1
O




}
2

.

}
2

(36)

The above findings can be summarized as follows.



g1 g2 g3

0.358006714919 0.285113393082 −0.239789603949
−0.418930417110 −0.146181763445 0.099525577556

0.203697087422 −0.218955991873 0.199033965888
0.002826360543 0.498085864326 −0.280579620459

−0.065289305020 −0.326958874104 −0.164217202965
−0.000649909267 −0.027423540495 0.548121218371

0.022059872669 0.085576352191 −0.302154238864
0.002840040788 0.012040803954 −0.048376908004

−0.004922768725 −0.017947844194 0.056788882014
−0.001228555869 −0.004389592253 0.013343131188

0.000463912919 0.001792150288 −0.006284808168
0.000154637640 0.000597383429 −0.002094936056

g4 g5

0.085295691728 −0.012543484077
−0.019191530639 0.002822283917
−0.061856449579 0.010053950918

0.061788157278 −0.006214251070
0.032053131410 −0.001841453148

−0.151061527183 0.023172344684
−0.008615979840 −0.018493973553

0.459389773437 −0.126840407858
−0.436869341495 0.031080662965
−0.030726657970 0.455269238917

0.122748096178 −0.455206521497
0.023554920948 −0.033679951610

−0.019531250000 0.126302083333
−0.006510416667 0.024739583333

0 −0.019531250000
0 −0.006510416667

Table 2: Primal edge wavelet filters for biorthogonal 3/5 wavelets.

Lemma 3. The following relations hold:

B̂jÂ
(3)
j = I#Ij ,

1

2
F̂T

j F̂j = I2j (37)

and
B̂jF̂j = 0, F̂T

j Â
(N)
j = 0. (38)

The proof of this lemma is similar to the proof in [6]. Note that the refinement matrix Mj,0 can
be factorized as

Mj,0 = PjÂj = PjĤ
−1
j Â

(3)
j (39)

with

Pj :=




ML

I#Ij−5

MR



. (40)

Now we are able to define the initial stable completions of the refinement matrices Mj,0.



Lemma 4. Under the above assumptions, the matrices

M̌j,1 := PjĤ
−1
j F̂j , j ≥ j0, (41)

are uniformly stable completions of the matrices Mj,0. Moreover, the inverse

Ǧj =

(
Ǧj,0

Ǧj,1

)
(42)

of M̌j =
(
Mj,0, M̌j,1

)
is given by

Ǧj,0 = B̂jĤjP
−1
j , Ǧj,1 =

1

2
F̂T

j ĤjP
−1
j . (43)

The proof of this lemma is straightforward and similar to the proof in [6]. Then using the initial
stable completion M̌j,1 we are already able to find wavelet filters according to the Theorem 2.
Primal edge wavelet filters are listed in Table 2. There is only one edge dual wavelet filter(

2
3 ,−4

3 , 1,−1
3

)
.

5 Numerical examples

In this section, we compare errors for wavelet image compression techniques mentioned above.
We compress an image of a boat, see Figure 1, and an image of peppers, see Figure 2.
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Figure 2: An original image of peppers and its reconstruction from 2% of wavelet coefficients.

We decompose the images on five levels using biorthogonal filters 3/5 from [5]. We compute
the decompositions for several image extensions. We also apply discrete wavelet transform with
special edge wavelet filters from the previous section. Then we threshold the wavelet coefficients
greater than 100 and we reconstruct an image. Let I and Î be arrays of the size 512 × 512 × 3
characterizing colours in the original image and the reconstructed image, respectively. For
several methods we compute

K :=
number of nonzero coefficients

number of pixels in an original image
(44)

and

relative error :=

√√√√√
∑3

k=1

∑512
i,j=1

(
I (i, j, k) − Î (i, j, k)

)2

∑3
k=1

∑512
i,j=1 I (i, j, k)2

. (45)

Furthermore, we compute the boundary error, i.e. the relative error for the area near the
boundary. The results are given in Table 3. They confirm the theoretical assumption that the



error of the compression is smaller for the discrete wavelet transform with edge wavelets from
[4] than for other methods using an extension of an image.

Image of a boat Image of peppers

method K error boundary method K error boundary
error error

edge 0.0405 0.0873 0.0991 edge 0.0219 0.0672 0.0608
sym 0.0423 0.0895 0.1259 sym 0.0275 0.0705 0.0937
sp1 0.0442 0.0896 0.1289 sp1 0.0304 0.0706 0.0974
sp0 0.0340 0.0896 0.1297 sp0 0.0206 0.0708 0.0991

asym 0.0473 0.0909 0.1563 asym 0.0342 0.0727 0.1264
ppd 0.0474 0.0912 0.1607 ppd 0.0331 0.0740 0.1409
per 0.0290 0.0916 0.1637 zpd 0.0197 0.0740 0.1417
zpd 0.0314 0.0916 0.1698 per 0.0171 0.0736 0.1420

Table 3: Errors for several image compression methods.

Figure 3 shows the bottom right corner of the image of peppers and its reconstruction by
several methods.
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Figure 3: Part of an image of peppers and its reconstruction by several methods.
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