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Abstract. The paper deals with the discrete complex Fourier transform which has been considered 
for both three- and two phase orthogonal voltages and currents of systems. The investigated systems 
are power electronic converters supplying alternating current motors. Output voltages of them are 
strongly non-harmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal 
currents with low total harmonic distortion. Modelling and simulation experiment results of half-
bridge matrix converter for both steady- and transient states are given under substitution of the 
equivalence scheme of the electric motor by resistive-inductive load and back induced voltage. The 
results worked-out in the paper confirm a very good time-waveform of the phase current and results 
of analysis can be used for fair power design of the systems.  

1. Introduction 

Time domain waveforms of electrical quantities can be either continuous or discrete, and they can 
be either periodic or aperiodic. This defines four types of Fourier transforms: the Fourier series 
(continuous, periodic), and the Fourier transform (continuous, aperiodic) and discrete versions: the 
Discrete Fourier Transform - DFT (discrete, periodic), the Discrete Time Fourier Transform 
(discrete, aperiodic) [1]-[2]. All four members of the Fourier transform family above can be carried 
out with either real- or complex input data. In spite of complex amplitudes of harmonic components 
is notation of Fourier series in complex form more compact and easier than pure real expressions. 
This holds true also for complex Fourier transform which is very close to complex Fourier series 
[2]. Both of them are usually handling with real time functions [3], [4]. Method of complex 
conjugated amplitudes has been used for solving of electrical circuits, and electrical machines, too  

However, the output quantities of real power electronic converters can be transformed into complex 
time functions using Park or Clarke transform, respectively, as vectors rotating in complex Gauss 
plain. The most advantage of this form of presentation is – in case of symmetrical system - that 
periodicity of the waveforms in complex plain is 2m-times higher then in real time domain. So, the 
Fourier analysis, also integral values calculation, can be done more quickly. Another benefit is 
possibility of direct using of complex Fourier transform/series because of quantity functions present 
complex input data for continuous or digital processing. 

2. Using orthogonal output voltages and complex Fourier analysis 

Applying Park/Clarke transform the complex time function of output phase voltage in three-phase 
system is, Fig. 1 
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It deals with the voltage vectors rotating in Gauss α,β-plain by angular speed ω which can be also 
non-constant.  
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Fig. 1 Orthogonal voltage systems of three-phase inverter with full-width pulses: 
direct uα (a)- and quadrature voltage uβ (b) 

Now, the voltages uα and uβ create orthogonal system, and complex Fourier transform can be used.  

So, then the complex Fourier transform or/and complex Fourier coefficients can be calculated 
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whereby their mutual relation is )(
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where ω = 2π/T. 

The discrete Fourier transformation has been used for calculation of individual harmonics coeffi-
cients [2]: 
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Alternatively, Euler's relation can be used to rewrite the forward transform in rectangular form: 
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Real and imaginary part of U(ν) can also be expressed: 
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Based of above definition the relation for complex Fourier coefficients of complex voltage function 
yields: 
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Eq. (6) can be decomposed into two scalar equations for Cν
α and Cν

β, if needed:  
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Such a Fourier series is developing on system of orthogonal functions exp(j.n.2π.t/T), n = 0, ±1, 
±2.., for which the integral 
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is equal to 0 for m ≠ -n, and equal to T for m = -n. 

The system of voltages is ortho-normal one, too. Since uα voltage will contain sin-terms only, the 
second one uβ cos-terms.  

3. Complex Fourier analysis of the voltage of AC/AC half-bridge matrix converter system  

Matrix converter system DC/HF_AC/2AC with high frequency AC interlink can generate two-
phase orthogonal output with both variable voltage and frequency [4] and others. Usually, the 
switching frequency of the converter is rather high (~tens kHz). Equivalent circuit diagram of one 
half-bridge single phase converter (one of two-phase orthogonal systems) is depicted in Fig. 2. 
Since the voltages of the matrix converter system are orthogonal, the second phase converter is the 
same and its voltage is shifted by 90 degree.  

 

Fig. 2 Circuit diagram of single-phase half-bridge matrix converter 

Contrary to bridge matrix converter the half-bridge connection doesn’t provide unipolar PWM 
control, so the bipolar pulse switching technique should be used. The orthogonal voltages with 
bipolar PWM control are depicted in Figs. 3a and 3b. 

a)  

b)  

Fig. 3 Output orthogonal voltages of the half-bridge matrix converter system with bipolar PWM 



 

Considering bipolar PWM with switching frequency equal to odd multiply of fundamental 
frequency.  

It deals with sinusoidal bipolar pulse-width-modulation contrary to unipolar regular PWM [5], [6]. 
Switching-pulse-width can be determined based on equivalence of average values of reference 
waveform and resulting average value of positive and negative switching pulses area during 
switching period (see Figs. 5a,b).  

First, let’s define both amplitude- and frequency modulation ratios ma and mf as: 
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where U1m is reference amplitude of fundamental harmonic, 
 UAC  magnitude of supply voltage, 
 fs  switching frequency, 
 f1  fundamental frequency. 

Choosing frequency modulation ratio mf as odd integer results in an odd symmetry [u(-t) = - u(t)] as 
well as half-wave symmetry [u(-t) = - u(t+Ts/2)] with the time origin shown in Fig. 4. Therefore, 
only odd harmonics are present and the even harmonics disappear from the wave form of ua. 
Moreover, only the coefficients of the sine series in Fourier analysis are finite; those for the cosine 
series are zero. 

 
a)      b) 

Fig. 5 Output voltages of single-phase bridge matrix converter with odd- a) and even mf b) 

Then total voltage time waveform will be: 
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where switching instant is equal to: 
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and S∆(k) is area under sinewave during k-switched interval: 
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and 
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For the parameters (the same as in [11] to be compared):  

2 x UDC = 300 V – input voltage, 
fIN = fS = 39 kHz – switching frequency, 
fOUT = 50 Hz      – fundamental output frequency, 
ma = 1; mf = 39  – amplitude and frequency ratios, 

The discrete complex Fourier transformation has been considered for both single- and two phase 
orthogonal systems. Based on discrete formulas (4)-(5a) the amplitudes of the first 30 voltage 
harmonics (by 165th-harmonic) have been calculated:  

A1 = 150.ma = 150 V; A39 =  90.16    V; A39-2 = A39+2 = 47.70    V; A39-4 = A39+4 =   2.70    V; A78-1 = 
A78+1 = 27.15     V; A78-3 = A78+3 = 31.80     V; A78-5 = A78+5 =   4.95     V; A117 =   16.95    V; A117-2 = 
A117+2 =  9.30    V; A117-4 = A117+4 = 23.55   V; A117-6 = A117+6 =  6.60    V; A156-1 = A156+1 = 10.20    V; 
A156-3 = A156+3 =   1.35    V; A156-5 = A156+5 = 17.85    V; A156-7 = A156+7 =   7.50    V; 

The harmonic spectrum is plotted in Fig. 6, which is plotted for mf = 39. 

 
Fig. 6 Harmonic amplitude spectrum of bipolar PWM with odd mf 

Note: The carried-out results are almost identical ones compared with those given in [5] for DC/AC 
inverter with bipolar sinusoidal PWM.  

Considering bipolar PWM with switching frequency equal to even multiply of fundamental 
frequency.  

The voltage waveform is depicted in Fig. 5b above. Then total voltage time waveform will be: 
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where switching instant is equal to: 
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and S∆(k) is area under sinewave during k-switched interval: 
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4. PC simulation in MatLab programming environment 

Simulation experiments have been done for the parameters:  R = 10 Ohm,  L = 25 mH,  U = 150 

V,   f = 50 Hz  at  ma  = 1,  mf  = 39, time increment ∆t = 5 µs.  

 
Fig. 7: Time waveform of voltage (1. harmonic component) and load current – with various 

counter-voltage and modulation index of bipolar PWM ma=0.2-0.8 and mf=39 

Root-mean-square value of the total steady-state current of R-L load can be calculated as:  
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The total harmonic distortion of the current is given by: 
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5. Conclusions 

The complex Fourier transformation has been considered for two phase orthogonal systems of 
converter output voltages, strongly non-harmonic ones. The solution given in the paper makes it 
possible to analyse more exactly effect of each harmonic component comprised in total waveform 
on resistive-inductive load or induction motor quantities. The proposed system with AC interlink in 
comparison with currently used conventional systems uses two single phase half bridge matrix 
converters with bipolar pulse-width modulation. The advantage is then less number of 
semiconductor devices of the converters. However, in practice, the necessary imposition of a dead-
band, or blanking time, results in some distortion of the output voltage. Then the dead-band, its 
symptoms and related remedies, is necessary to take into account for solutions. 
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