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Abstract. The paper deals with the discrete complex Four@nsform which has been considered
for both three- and two phase orthogonal voltaged eurrents of systems. The investigated systems
are power electronic converters supplying alterngtcurrent motors. Output voltages of them are
strongly non-harmonic ones, so they must be putsduhated due to requested nearly sinusoidal
currents with low total harmonic distortion. Modalj and simulation experiment results of half-
bridge matrix converter for both steady- and tramgi states are given under substitution of the
equivalence scheme of the electric motor by resistiductive load and back induced voltage. The
results worked-out in the paper confirm a very gtote-waveform of the phase current and results
of analysis can be used for fair power design efdysstems.

1. Introduction

Time domain waveforms of electrical quantities b&neithercontinuousor discrete and they can

be eitherperiodic or aperiodic This defines four types of Fourier transformse #ourier series
(continuous, periodic), and the Fourier transfqomntinuous, aperiodic) and discrete versions: the
Discrete Fourier Transform - DFT (discrete, permjdithe Discrete Time Fourier Transform
(discrete, aperiodic) [1]-[2]. All four members tfe Fourier transform family above can be carried
out with either real- or complex input data. Intsm@f complex amplitudes of harmonic components
is notation of Fourier series in complex form mooenpact and easier than pure real expressions.
This holds true also for complex Fourier transfosmch is very close to complex Fourier series
[2]. Both of them are usually handling with reamné& functions [3], [4]. Method of complex
conjugated amplitudes has been used for solvimdeatrical circuits, and electrical machines, too

However, the output quantities of real power etmutr converters can be transformed into complex
time functions using Park or Clarke transform, eespely, as vectors rotating in complex Gauss

plain. The most advantage of this form of preseémats — in case of symmetrical system - that

periodicity of the waveforms in complex plainZsxtimes higher then in real time domain. So, the

Fourier analysis, also integral values calculatican be done more quickly. Another benefit is

possibility of direct using of complex Fourier teilorm/series because of quantity functions present
complex input data for continuous or digital prcaeg.

2. Using orthogonal output voltages and complex Fourier analysis

Applying Park/Clarke transform the complex time dtion of output phase voltage in three-phase
system is, Fig. 1

u) = 2u® +am,0 +a* )=y, + )
where after adapting
1 _ 43
u, =500 -wO-u®] oy =0 -] (2a.0)

It deals with the voltage vectors rotating in Gaugsplain by angular spee@ which can be also
non-constant.
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Fig. 1 Orthogonal voltage systems of three-phaserter with full-width pulses:
direct u, (a)- and quadrature voltage, (b)

Now, the voltages,, andu, create orthogonal system, and complex Fouriestoam can be used.
So, then the complex Fourier transform or/and cemplourier coefficients can be calculated

T .
U(vat) = [ u(t) exp(jat)dt 3)
or, respectively
1l .21
C, == jo u(t) [exp(j v?t)dt (3a)
: L. 1
whereby their mutual relationis C, =?U(VM) (3b)

where w= 277T.

The discrete Fourier transformation has been usedalculation of individual harmonics coeffi-
cients [2]:
1\ . 2n
Ulv] =2 uln]expt-jv-=n) )
n=0

Alternatively, Euler's relation can be used to lieavwhe forward transform in rectangular form:

U[v] :%Nfu[n] [ﬂcos(van/ N)—j E;in(van/ N)) (4a)

n=0

Real and imaginary part &f(v) can also be expressed:

ReU ()} :%fu(n) co{zn”—’\'l’j Im{U (v)) = _WZNZlu(n) sin(Znn—l\ll/j (5a,b)

n=0

Based of above definition the relation for compl@urier coefficients of complex voltage function
yields:

1.7 . .27
C, :?j'o [ua )+ jug (t)][éxp(—j V?t) dt (6)
Eq. (6) can be decomposed into two scalar equat@r®,* andC,”, if needed:

_ 2T . 2n
Coo =T |, WO expEjv =yt (6a)

2T .2
o :?jo Uy (t) Cxp(j v?nt) dt (6b)



Such a Fourier series is developing on system thiogonal functions exp(.2mt/T), n = 0, +1,
+2.., for which the integral

T .21 . 2n
IO exp(—jn?t) exp(—jm?t)dt (6¢)

is equal td for m# -n, and equal t@ for m = -n.

The system of voltages is ortho-normal one, too. Since u,, voltage will contain sin-terms only, the
second one ug cos-terms.

3. Complex Fourier analysis of the voltage of AC/AC half-bridge matrix converter system

Matrix converter system DC/HF_AC/2AC with high fregpcy AC interlink can generate two-
phase orthogonal output with both variable voltagel frequency [4] and others. Usually, the
switching frequency of the converter is rather h{gtens kHz). Equivalent circuit diagram of one
half-bridge single phase converter (one of two-phaghogonal systems) is depicted in Fig. 2.
Since the voltages of the matrix converter systeenogthogonal, the second phase converter is the
same and its voltage is shifted by 90 degree.

Fig. 2 Circuit diagram of single-phase half-bridgeatrix converter

Contrary to bridge matrix converter the half-bridgennection doesn’t provide unipolar PWM
control, so the bipolar pulse switching technighewd be used. The orthogonal voltages with
bipolar PWM control are depicted in Figs. 3a and 3b
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Fig. 3 Output orthogonal voltages of the half-bredignatrix converter system with bipolar PWM



Considering bipolar PWM with switching frequency equal to odd multiply of fundamental
frequency.

It deals with sinusoidal bipolar pulse-width-modida contrary to unipolar regular PWM [5], [6].
Switching-pulse-width can be determined based amvatgnce of average values of reference

waveform and resulting average value of positivel aegative switching pulses area during
switching period (see Figs. 5a,b).

First, let’s define both amplitude- and frequenaydulation ratiosn, andny as:

m, = S ;M :%,
U, 1
where Ui, is reference amplitude of fundamental harmonic,
Uac  magnitude of supply voltage,
fs switching frequency,

f1 fundamental frequency.

(7a,b)

Choosing frequency modulation ratig as odd integer results in an odd symmaeifyt] = - u(t)] as
well as half-wave symmetry(-t) = - u(t+T42)] with the time origin shown in Fig. 4. Thereéor
only odd harmonics are present and the even haosniatisappear from the wave form af
Moreover, only the coefficients of the sine sere&ourier analysis are finite; those for the cesin
series are zero.
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Fig. 5 Output voltages of single-phase bridge nxatonverter with odda) and even pb)
Then total voltage time waveform will be:

(m ‘2)_1
u(t) = g% Z {co{v [k %) - co{v [k E—% +V Dw[ﬂs(k)ﬂ _

—| cosg mk+1)%—l/ Bd[ﬂs(k))—COS(/[ﬂ(%) +

(8)

Aot b oo

where switching instant is equal to:

(k)=

DC

m
ESA(k)+125 and t (——=) = —= (9a,b)



andS, (k) is area under sinewave durikgwitched interval:

S, (k) =U E—TEEECO{ ) s(—[ﬂk+1)ﬂ (10a)

SN %)=u Eﬂ[ﬁco{uaz—@—} co{v d“f—‘2+im (10b)

m o 4 m

and

For the parameters (the same as in [11] to be cadpa

2 xUpc = 300V - input voltage,

fin =fs = 39 kHz — switching frequency,

four =50 Hz — fundamental output frequency,
ma=1;mf = 39 — amplitude and frequency ratios,

The discrete complex Fourier transformation has lmsrsidered for both single- and two phase
orthogonal systems. Based on discrete formulag5@)-the amplitudes of the first 30 voltage
harmonics (by 165harmonic) have been calculated:

A1 = 150mg =150 V;Azg= 90.16 VA390=Azg0+2=47.70 VA394=Az9+4= 2.70 VAz;g1=
A7g+1=27.15 VA3=A,+3=31.80 VAms=A;s= 4.95 VA= 16.95 VAu72=
A117+2= 9.30 V/A117.4= A117+4= 23.55 VA1176=Anur7+6= 6.60 ViAis6.1=Ass6+1=10.20 1V,
Aise3=Aise+3= 1.35 VAises=Aisess= 17.85 VAise.7=Aise+7= 7.50 'V,

The harmonic spectrum is plotted in Fig. 6, whicplatted fornmy = 39.
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Fig. 6 Harmonic amplitude spectrum of bipolar PWMhnodd m

Note: The carried-out results are almost identic&isocompared with those given in [5] for DC/AC
inverter with bipolar sinusoidal PWM.

Considering bipolar PWM with switching frequency equal to even multiply of fundamental
frequency.

The voltage waveform is depicted in Fig. 5b abovesriltotal voltage time waveform will be:

(mf /4)
u(t) = Z 4DUDC 2 {[CO{V Tk E—%] - co{v [k E—% +v mEﬂs(k)ﬂ -

(11)
{cos(/ Tk +1) Gr%" —v [, (K)) - cosp [k 9%")} Bin@ Qo)

where switching instant is equal to:

(k)=

s, (K) +% (11a)

DC



andS, (k) is area under sinewave durikgwitched interval:

m; 2 2
ORI [ﬁco{m—’j Ek] - co{m—’j [k + 1)ﬂ (11b)

4. PC ssimulation in MatL ab programming environment

Simulation experiments have been done for the petenst R= 10 Ohm, L =25 mH, U= 150
V, f=50Hz atm, =1, my = 39, time incrememt = 5pus.
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Fig. 7: Time waveform of voltage (1. harmonic comgrtt) and load current — with various
counter-voltage and modulation index of bipolar PW{#0.2-0.8 and =39

Root-mean-square value of the total steady-statemofR-L load can be calculated as:

|:\/@:m:m: z[\/R%ZJ/VDwD_)j (2

The total harmonic distortion of the current isegivby:

LS

R% + (v oL )
u,’

R? +(wL)?

~1~2% (12a)

5. Conclusions

The complex Fourier transformation has been corsitléor two phase orthogonal systems of
converter output voltages, strongly non-harmoniesorrhe solution given in the paper makes it
possible to analyse more exactly effect of eacimbarc component comprised in total waveform

on resistive-inductive load or induction motor gtits. The proposed system with AC interlink in

comparison with currently used conventional systersss two single phase half bridge matrix
converters with bipolar pulse-width modulation. Tlelvantage is then less number of
semiconductor devices of the converters. Howewepractice, the necessary imposition of a dead-
band, or blanking time, results in some distortadrthe output voltage. Then the dead-band, its
symptoms and related remedies, is necessary tartakaccount for solutions.
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