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Abstract

We study preconditioning of a coarse problem within a special domain decom-
position algorithm for solving partial differential equations. We consider the
method of balanced domain decomposition by constraints where coarse base
functions are defined by some nodal values on interfaces of subdomains and fulfil
a minimal energy condition. An algebraic multilevel preconditioning strategy is
used for the coarse problem. Numerical estimates of the main characteristic of
the quality of preconditioning are presented.

1 A method of BDDC

A method of balanced domain decomposition by constraints (BDDC) is an iterative algorithm
for numerical solution of elliptic partial differential equations discretized by finite element (FE)
method which exploits a nonoverlaping partition of a domain [3]. In each iteration, the problem
is restricted on every particular subdomain and solved, and a certain coarse grid solution is
found on the whole domain. Base functions for the coarse problem are defined by nodal values
(degrees of freedom, DOFs) in some points on interfaces of subdomains and have minimal energy
on each subdomain and null normal derivatives on all interfaces, see two samples on Figure 1.
Then in general, the coarse functions are discontinuous on interfaces of subdomains up to the
nodes where coarse DOFs are defined . The coarse problem itself can be large and often is
a bottleneck of BDDC computation and thus an appropriate preconditioning is desired [2].

2 AML preconditioning

In our contribution we present a new strategy of preconditioning of the coarse problem of BDDC.
This is based on an algebraic multilevel (AML) preconditioning technique [1]. In spite of classical
application of AML preconditioning directly to finite element bases, we utilize a hierarchical
splitting of the coarse space of BDDC. A quality of AML preconditioning can be measured by
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Figure 1: Two samples of coarse base functions restricted on a single subdomain defined by
different sets of coarse DOFs: four corner nodal values (left) and eight boundary nodal values
(right).



a constant γ in the strengthened Cauchy-Buniakowski-Schwarz (CBS) inequality [1]. After block
diagonal preconditioning with two blocks corresponding to stiffness matrices of two hierarchical
base systems, a resulting condition number is

κ =
1 + γ

1 − γ
.

As a result, our wish is to find a hierarchical splitting with a sufficiently low CBS constant.

3 Numerical estimates of CBS constants for hierarchical coarse

spaces

We provide numerical estimates of the CBS constants for several two- and three-dimensional
problems. An equation of diffusion and a linear elasticity equation are considered. For discreti-
sation, bilinear or trilinear FEs are used with a rectangular or prismatic support, respectively.
The subdomains are of a rectangular or prismatic shape as well. Coarse base functions are
defined by corner nodal values on subdomains. In every problem a hierarchical splitting of the
coarse base system is constructed with coefficients which are equal to that for hierarchical trans-
formation of FEs [4]. In each test we specify only a bilinear form a(·, ·) of the weak formulation
of the problem since neither boundary conditions nor a right hand side of the equation influence
estimates of the CBS constant γ.

The estimate of γ can be calculated from exploiting the properties of the coarse function
on a single subdomain only. A mesh of a reference subdomain may influence the value of γ.
Then in each graph, a number of elements in a reference subdomain is indicated. Our main
interest is to examine a behavior of γ when varying the coefficients of a bilinear form a(·, ·). All
computations are performed in Matlab.

Diffusion equation (D2). Bilinear form a(·, ·) has the form

a(u, v) =

∫

Ω
(∇u)T C∇v dx,

where

C =

(

1 c
c d

)

.

The values of c and d are assumed to be constant on each subdomain.

Let us compare the estimates of γ2 for the case c = 0 and d ∈ (0, 1〉 in Figure 2 on the left
for meshes of a reference subdomain 1× 1, 5× 5 and 50× 50, respectively. On the right, values
of γ2 are presented for d = 1 and c ∈ (−1, 0〉.

Diffusion equation (D3). Bilinear form a(·, ·) is

a(u, v) =

∫

Ω
(∇u)T C∇v dx,

where

C =







1 c12 c13

c12 d2 c23

c13 c23 d3






,

such that di and cij are constant on subdomains and matrix C is positive definite.

The estimates of γ2 for the case d2 = 1, cij = 0 and d3 ∈ (0, 1〉 are shown in the left part
of Figure 3 for meshes of a reference prismatic subdomain 1× 1× 1, 3× 3× 3 and 10× 10× 10,
respectively. In the right hand side of Figure 3, values of γ2 for the case di = 1 and c12 = c13 =
c23 ∈ (−0.5, 0〉 are presented.
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Figure 2: Numerical estimates of γ2 for hierarchical splitting of coarse problems of BDDC for
equation D2. Constant off-diagonal coefficient c = 0 and varying d ∈ (0, 1〉 (left), and the case
d = 1 and c ∈ (−1, 0〉 (right). Each set of values is calculated for three different meshes of
a reference subdomain.
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Figure 3: Numerical estimates of γ2 for hierarchical splitting of coarse problems of BDDC for
equation D3. Diagonal coefficient d2 = 1 and off-diagonal coefficients cij = 0 and varying
d3 ∈ (0, 1〉 (left), and the case d2 = d3 = 1 and c12 = c13 = c23 ∈ (−0.5, 0〉 (right) for three
different meshes of a reference subdomain.
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Figure 4: Numerical estimates of γ2 for hierarchical splitting of coarse problems of BDDC for
equations E2 (left) and E3 (right). Varying Poisson ratio ν ∈ 〈0, 0.5) and three different meshes
of reference subdomains.

Elasticity equations (E2) and (E3). Bilinear form a(·, ·) is

a(u,v) =

∫

Ω
2µ(∇(s)u)T∇(s)v + λdivu · divv dx,

where ∇(s)u = ε(u) and

εij(u) =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

.

The constant µ is the share modulus of a material and λ is the Lamé constant. Substituting
µ = E/2/(1 + ν) and λ = Eν/(1 + ν)/(1 − 2ν) we can use the Poisson ratio ν and the modulus
of elasticity E. This problem is considered as a two- or three-dimensional problem, respectively.

The stimates of γ2 for elasticity equations and for ν ∈ 〈0, 0.5) can be found in Figure 4.
A two-dimensional case for partition of a rectangular subdomain 1 × 1, 5 × 5 and 50 × 50,
respectively, is shown on the left. A three-dimensional case for meshes 1 × 1 × 1, 3 × 3 × 3 and
10× 10× 10, respectively, on a reference prismatic subdomain can be found in the right part of
Figure 4.
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