
TRANSPORT SYSTEM REALIZATION IN SIMEVENTS
TOOL

K. Valigura, M. Foltin, M. Blaho

Slovak University of Technology in Bratislava,
Faculty of electrical engineering and information technology

Abstract

SimEvents tool allows modeling and simulating discrete-event systems. Such discrete-
event systems are flexible manufacturing systems or transport systems. In this article
we will focus on transport system that represent rail yard in which we can simulate
movement of three trains.

1 SimEvents tool
SimEvents [1] extends Simulink with tools for modeling and simulating discrete-event systems.

By SimEvents it is possible to create a discrete-event simulation model to simulate the passing of
entities through a network of queues, servers, gates and switches based on events. SimEvents
and Simulink provide an integrated environment for modeling hybrid dynamic systems containing
continuous-time, discrete-time and discrete-event components.

Discrete-event simulation contains discrete items that are called entities. Each entity can carry
data known as attributes. Every passing of entity through block is understood as event that represents
immediate discrete incident. This incident changes state of variables, outputs or occurrence of next
events.

2 Transport system and SimEvents
Created transport system model is rail yard that allows simulate movement of three trains.

Trains are represented by entities and their passings between single parts of rail yard are events. As
was said in previous chapter, every entity can carry data. In this case those data contain information
about individual trains. All of this information contain number of train, train speed, total moved
distance, routing number for train routing on the next rail switch and total time of train movement.
Some of mentioned data is assigned to individual entity as an input parameter and others are
preconfigured in m-file that is used for initialization.

3 Created function blocks
Let’s take a fact that each rail yard consist of three main parts. Those parts are stations, rail

switches and single sections of rails. Each of those main parts is represented by separate module. This
way we can assemble arbitrary rail yard using created modules. Single modules are connected with
each other by entity connections.

Beyond modules that represent main parts of rail yard we created some special modules as well.
Those special modules are integrated into main modules. They are additions to SimEvents blocks to
achieve required functionality. All created modules main and special are in fact subsystems that
consist of SimEvents and Simulink blocks.

Main modules

The first from main modules is Station (figure 1) that represents section of rails ended with
station. Its function is to act as start and destination point of individual trains. This module beyond
entity ports has one signal port as well. Signal in this port carry information about train number which
ended up in this station, its total moved distance and total time.

Figure 1: Station module

Figure 2 depicts internal structure of this module. As is shown, structure is separated into two
ways. The upper one represents case that given module is destination station for entity. At the
beginning is ensured using Enabled Gate block that entity is only entity in given module. This way
only one entity can ends its way in this module or in other words only one train is allowed to end its
way in given station. Enabled Gate block is controlled by value of input signal. The signal has value 0
in case no entity is in module, otherwise its value is 1. The presence of entity is verified by two values.
They are input parameters for function generating gate controlling signal. The first value is number of
entities that departed from Enabled Gate block. The number bigger than 0 indicates that some entity is
already in module. The second value is number of entities in Single Server block. This block delays
entity that departs given module. Alternatively, if one train is departing station other train cannot
arrive into this station. It is possible only after the first train departs from station. From Enabled Gate
block entity continues to Get Attribute block where speed, distance of section and total distance are
read. All of this attributes are input parameters for Computing module. In Computing module total
moved distance is increased by distance of given section and total time needed to pass through this
section is computed. In Set Attribute block updated total moved distance is set to entity. After this step
entity spends computed time in Single Server block. After expiration of this time entity comes to
another Get Attribute block where number of train and total moved distance are read. The next block
is Read Timer block where total time is read. All this information is send through output signal from
Station module. From Read Timer block entity comes to Entity Sink block which serves as entity path
terminator.

Figure 2: Internal structure of station module

The entity goes through the bottom way in case that given module is starting point for it. After
departing of initialization block entity advance into Get Attribute block where speed, distance and
distance of given section attributes are read. The distance of given section is obtained from Constant
block. Here is its value set as input parameter. All of this attributes are input parameters for
Computing module. In Computing module total moved distance is increased by distance of given

section and total time needed to pass through this section is computed. In Set Attribute block updated
total moved distance is set to entity. After this step entity spends computed time in Single Server
block. After expiration of this time entity departs Station module.

Second from main modules is Rail switch (figure 3). Main feature of this module is to route
trains to their destination station.

Figure 3: Rail switch module

The internal structure of this module is shown on the figure 4. After entity arrival, attributes
train number, count, speed and distance are read in Get Attribute block. In Computing module total
moved distance is increased by distance of given section, total time needed to pass through this section
is computed and new values of count and next attributes are computed. In Set Attribute block updated
total moved distance, new values of count and next attribute are set to entity. After this step entity
spends computed time in Single Server block. After expiration of this time entity departs Rail switch
module through output specified by value of next attribute.

Figure 4: Internal structure of rail switch module

During passing of entity through this module it is checked weather entity is only entity in given
module. Number of entities in Single Server block shows how many of them is in current module. In
case that number of entities is bigger than 1 collision is detected and simulation ends immediately.

The Single section module is last module from this group (figure 5). This type of module
represents section of rails with defined distance.

Figure 5: Single section of rails module

Internal structure of this module is shown on the figure 6.

Figure 6: Internal structure of single section module

After entity arrival, attributes speed, section distance and distance are read in Get Attribute
block. All of this attributes are input parameters for Computing module. In Computing module total
moved distance is increased by distance of given section and total time needed to pass through this
section is computed. In Set Attribute block updated total moved distance is set to entity. After this step
entity spends computed time in Single Server block. After expiration of this time entity departs Single
section module.Collision in this module is controlled the same way as in Rail switch module.

Each main module has two configurable parameters. First of them is distance of current section
and the second one is number of this section. The second parameter uniquely identifies current module
from others modules of the same type. Unique identification is important to determine in which
module collision occurred. Given module is colored red in case of collision and simulation ends
immediately.

Special modules

Group of special modules consist of couple of modules. The first of them is Initialization block
(figure 7) which is integrated into Station module.

Main features of this module are:

- to generate entity,

- assign initial values to entity,

- start entity timer,

- delay entity start if required.

Figure 7: Initialization block

Internal structure of this module (figure 8) consist of three ways. Each of them represents
concrete number of train that starts in station where given initialization block is integrated.

Figure 8: Internal structure of initialization block

Change in input signal of Event-based Entity Generator block cause entity generating. At the
beginning of the simulation is value of this signal 0. In case that constant equals to value true,
Compare To Content block changes signal value to 1. The constant represents variable which indicates
weather trains with certain number starts in given Station. After generating entity goes on to Set
Attribute block where initial values of attributes are set. From this point continues to Single Server

block where is delayed if required. Default delay value is 0. After this step entity comes to Start Timer
block where its timer is started. At the end all the ways are connected into one using Path Combiner
block and entity departs initialization module through it.

Following attributes are assigned to entity:
- train number
- count
- speed
- distance

The second module from this group is Counting module. There are two types of computing
module. First one (figure 9) is integrated into Station and Single section module.

Main features of this module are:

- update of total moved distance,

- computing of time to pass through given section.

Figure 8: Computing block 1

This type of computing module has three input and two output signal ports. Input signals carry
values that represent input parameters for Embedded Matlab Function block integrated in given
Computing module. This function block performs mentioned features of Computing module. By
analogy, output signals represent output variables of this function.

The second type of Computing module (figure 10) is integrated into Rail switch module. Its
main features are same as the first type appended by following:

- determine direction where train will go on from this module – routing,

- increment value of Count attribute.

Figure 9: Computing block 2

This type of computing module has four input and four output signal ports. As the first type of
this module those signals represents input and output parameters of Embedded Matlab Function block.
Function inside this block performs mentioned features.

4 Initialization
Before start of simulation initial values of variables have to be set. This step is important for

successful simulation. Initialization is involved by m-file. Consequently input parameters have to be
assigned into Matlab command line. Those parameters are number of trains, speed of individual trains,
trains start delay, number of start and destination station. According to number of start and destination
station track is selected. All tracks are preconfigured in initialization file.

After assembly of rail yard it is necessary to configure initialization file. It has to correspond
with newly created model of rail yard. Number of stations has to be set and all tracks the trains can go
along.

5 Example of transport system model
The example of rail yard model with six stations as well as way how the collision of trains is

signalized is depicted on figure 11.

Figure 11: Transport system model

6 Conclusion
Described transport system model demonstrates possibilities to use SimEvents tool for

realization transport systems as well as other systems which behavior depends on incurred events.

7 Acknowledgement
This work has been supported by Scientific Grant Agency VEGA 1/0544/09.

References

[1] The MathWorks, Inc., SimEvents – Getting started
[2] The MathWorks. Getting Started Guide. 2008
[3] Posterus.sk. Matlab Tutorials. [online] http://www.posterus.sk/?cat=7, 2009

Ing. Kamil Valigura
kamil.valigura@stuba.sk

Ing. Martin Foltin, PhD.
martin.foltin@stuba.sk

Ing. Michal Blaho
michal.blaho@stuba.sk

