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Abstract

The aim of this paper is to present an improved anéxtended version of thénverted
Pendula Modeling and Control, a structured thematic Simulink block library which
enhances the capabilities of theMATLAB/Simulink program environment by
providing means for modeling and control of classial and rotary inverted pendula
systems in form of function blocks, demo simulatiorschemes and applications with
graphical user interface.

1 Introduction

Inverted pendula systems represent a significagtscbf highly nonlinear mechanical systems
used in classical control education. Although uaderated and extremely unstable by nature, the
systems are controllable and have a number of ipghcipplications: problems such as balancing
a broomstick on a handpalm, stabilization of a wakhuman or robot, control of a launching rocket
or the vertical movement of a human shoulder or eamall be simulated by some type of an inverted
pendula system [1][2][3][4][5]. The diversity ohodeled systemis reflected in the wide variety of
availableinverted pendula model¥hese may be classified according to severadrait

* the type of base which actuates the penduthe system base may either be moving in a linear
manner €lassicalor linear inverted pendulum system), or in the rotary marinea horizontal
plane (otary inverted pendulum system);

» the number of pendulum links attached to the mashan every extra pendulum link increases
the number of the system’s degrees of freedom, mgagontrol in turn more challenging. For
inverted pendula systems, controllability has b&tsown for up to 4 links attached to the base [6].

« the distribution of mass along the pendulum rothe pendulum links can either be homogenous
rods with the mass concentrated in their centegrafity, or the rod may be considered to be
massless, with the mass concentrated in the lot &nd.

Fig. 1 shows the schematic depictions of threeatttaristic representatives of inverted pendula

systems which are most frequently used as testystdrss for nonlinear control design [1][2]: the
classical single (one-link), classical double (timdd and rotary single inverted pendulum system.
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Fig. 1 Typical representatives of inverted pendulaystems: a) classical single inverted pendulum sygsh,
b) classical double inverted pendulum system, c) tary single inverted pendulum system

When the prominent position that inverted pendyktesns occupy in nonlinear control theory
was considered by the authors of this paper, tba af providing integrated program support for the
whole class of systems immediately arose. As dtresistructured themati8imulinkblock library,
Inverted Pendula Modeling and Conti@PMaC), has been developed since 2009 as a comprehensive
software framework for the problems of analysis aadtrol of inverted pendula systems. While the



first presented version of the block library [3]sMémited to classical inverted pendula systemss, th
paper describes an improved and extended 201 lowen$ithe library which deals with two principal
categories of inverted pendula systems (classighlatary). The importance of the mutual analogy of
the systems is emphasized: if asystem of invegdeddula is approached as an instance of
a generalizedntlink) system, crucial procedures related to system timgdand control algorithm
design can be processed into an algorithm and mgaléed via symbolic software, represented in
MATLAB by the Symbolic Math ToolboxXThese considerations can be further extendedmdérat
algorithm design.

2 The Installation and Structure of thel PMaC Block Library

The IPMaC block library was designed IMATLAB/Simulinkand it is to be used exclusively
within this program environment. The core of thedl library was developed under the configuration
of OS Windows Vista™, MATLAB 7.6 (Release R2008ajter compatibility testing, extensions to
the library were made under OS Windows 7™ EnteepfidATLAB 7.9 (Release R2009b) as well as
MATLAB 7.12 (R2011a).

The installation process of thEMaC block library consists of unzipping the provided
InvPend.zippackage into a desired directory and calling tiiduided installation scripglblocks.m
Once installed, the library becomes an integral phathe Simulink Library Browserand thelPMaC
function blocks are fully compatible with the blackom the rest oBimulinkbuilt-in libraries.
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Fig. 2 The IPMaC, installed and active in thesimulink Library Browser

Like in any otherSimulinkblockset, thdPMacC function blocks are thematically arranged into
sublibraries which open when the corresponding iténthe IPMaC tree structure in th&imulink
Library Browseris singleclicked. The current version of tRMaC has kept the core of the sublibrary
structure from the original 2009 version: tmverted Pendula Models sublibrary contains simulation
models of the selected representatives of invgréetiula systems and theverted Pendula Control
sublibrary is made up of function blocks that inmpéat control algorithms. Additional sublibraries
have been designed to incorporate the actuatingpamésm block; useful sink and source blocks; or a
heuristic swing-up controller. The sublibrariestttieeIPMaC is currently structured into are:

* Inverted Pendula Control sublibrary — contains dynamic-masked function béoekhich
encapsulate state-feedback control algorithms
* Inverted Pendula Modds sublibrary — contains dynamic-masked simulation ef®dof

selected classical and rotary inverted pendulaesyst pre-prepared for use in open-loop
analysis as well as in state-feedback control desig



* Inverted Pendula Mators sublibrary — contains a block which implements #relytical
model of the most frequently employed actuatinghmecsm (brushed direct-current motor)

* Inverted Pendula Sinks and Sources sublibrary — concentrates all sink and source Ksloc
which may find their use in pendula modeling andtoa, such as an input signal constrained
in time and amplitude or a sink block that displaysignal in degrees rather than radians

* Inverted Pendula Swing-up sublibrary — contains a heuristic controller whiglings the
pendulum from the downward to the upright equilibriand switches to stabilizing control in
the moment the pendulum is sufficiently close @ tpright position.

In addition to sublibraries, the root directorytibé IPMaC includes two blocks of a special type which
open up into a collection of links that lead toaepeMATLAB/Simulinkools:

* Demo Smulations - opens up into atree structure of links to satioh schemes which
illustrate the ways of interconnecting ti®MaC blocks to solve a variety of problems

* Modeling and Linearization Tools — opens up into a set of links to a pair of agtians
which provide a comfortable, user-friendly graphiogerface to modeling and linearization.

3 Automatic Approach to Inverted Pendula MathematicalModeling

The automatic approach to motion equation derivattas promoted for a number of reasons: it
yields a particularly precise approximation of thal system’s dynamics and eliminates any factual o
numeric errors which could arise during manual rathtical modeling. To enable the automatic
derivation of motion equations for inverted pendsyatems, a general procedure has to be available
which will output the equations for any given numioé pendula [1][3][4]. Analysis of generalized
classical and rotary inverted pendula systems fibier@eeds to be dealt with.

The generalizedsystem of classical inverted pendula defined as aset afi>1 rigid,
homogenous rodspéndulum links which are interconnected in joints and attachedatart (i.e.
a stable mechanism which allows for movement aliolegs single axis). Analogically, the generalized
system of rotary inverted penduls composed of a set of>1 interconnected homogenous rods
mounted on a rigid arm which rotates in a horizoplane, perpendicular to the pendula. Every
system ofn inverted pendula is a multi-body composed of theeband the individual pendula, and
thus hasn+1 degrees of freedom. It is a typical example ofiaderactuated system since the number

of actuators is lower than the number of systerkslithe only input (the forc& (t) acting upon the
cart or the torqueM (t) applied on the rotary arm) is used to control thd outputs of the system:
cart position[m| or arm anglgrad], and pendula anglfad] .

3.1 Derivation of Motion Equations

The Inverted Pendula Model Equation Derivatas a MATLAB GUI application which
generates the motion equations for a user-chogan @y inverted pendula system (classical/rotary,
single/double). Fig. 3 shows an example previewthaf Derivator window which contains the
generated model equations for the rotary singleeried pendulum system. The whole derivation
process can be tracked in the command window feepreview in [3]).

The core of th@erivator tool is represented by MATLAB functions that uke $ymbolic Math
Toolboxto implement general procedures that derive théomcequations for a classical or rotary
inverted pendula system. If we view the system’'grées of freedom as the following vector of
generalized coordinates [2][7]:

.

o()=(at) at) - &) (1)
then the system can be mathematically describaldfyuler-Lagrange equations of second k{ode
for each generalized coordinate). The vector fofith@ equations is:

d (GL(t)J _aL(t) N oD(t) _ 0 2)

dtl a6(t) ) o0(t) a6(t)
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Fig. 3Inverted Pendula Model Equation Derivator with the derived rotary single inverted pendulum nodel
equations

where L(t) (Lagrange functioh is defined as the difference between the systetrigtic and
potential energy,D(t) (Rayleigh, dissipation functid)ndescribes the viscous (friction) forces and

Q (t) is the vector ofjeneralized external forcescting upon the system. The process of derivatfon

the motion equations to describe any kind of ire@émpendula system has thus transformed into the
determination of kinetic, potential and dissipatemergies related to the base and all pendula:

B (=) E() E(0=3En(), DO=YD () 3)

Using well-known physical formulae and the necesstreoretical assumptions, general
relations that describe the energetic balancebeobaise andth pendulum in a system ofinverted
pendula were derived and can be found in [1] fadhlxdassical and rotary inverted pendula systems.
Procedures which generate the equations of motioarfy given system type and number of pendula
were subsequently constructed and implementedrabaic MATLAB functions (invpenderiv.nfor
classical rotinvpenderiv.imfor rotary) which produce the equations in the difiggl and rearranged
form, equivalent to the most likely form obtainedrhanual derivation.

The mathematical models generated by fberivator will hereafter be referred to as
force/torque modejgo distinguish them fromioltage modelswhich will be derived in the following
section.

3.2 Simulation Models of Classical and Rotary InvertedPendulum Systems

The Inverted Pendula Modelsublibrary of thelPMaC block library contains library blocks
which represent the simulation models of a cla$sicale, classical double and rotary single ineért
pendulum system: th€lassical Single Inverted Penduluthe Classical Double Inverted Pendulum
and theRotary Single Inverted Penduluiptock. The structure of all blocks is composedagfically
designed subsystem blocks which are interconnegttdrespect to their mutual physical relations
(Fig. 4); each subsystem block implements a noatidéferential equation that is part of the sysem
Lagrange mathematical model, obtained from theerted Pendula Model Equation Derivator
application. Every model is composed rofl (2 for single, 3 for double) nonlinear secondeurd
differential equations that describe the base awth @endulum. The motion equations that make up
the respective mathematical models are specifi¢t]ji2][3].
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Fig. 4 The structure of the Rotary Single Inverted®Pendulum library block

Each included system is equipped with a dynamickbloask Edit — Mask Subsystgrmvhich
enables the user to edit the physical parametatsrétial conditions, to enable or disable the ihpu
(forceltorque) port and to flexibly adjust the nienbf the block’s output ports, which is equivalent
fitting areal model with sensors. This was impletee by creating scripts which add the
Input/Output Portblock into the scheme whenever the input or onehef outputs is marked as
required; and replace it by ti&ound/Terminatoblock if this is not the case.

3.3 Simulation Models of Direct-Current Motors

The practical use oforce/torque modelgyenerated by th®erivator and included in the
Inverted Pendula Modelsublibrary is limited purely to the simulationalvironment: we are unable
to manually generate a force or torque which, ibligol to the base, would stabilize the pendula in
a chosen position. As a resudtectric motorsneed to be coupled with inverted pendula systenast
as mechanisms which actually produce the forceomque which actuates both the base and the
attached pendula.

Although there has recently been arise in the gpgage of brushless (EC, BLDC) direct-
current motors, three-phase synchronous motorsaayiachronous (induction) motors [1][7][10], the
great majority of authors dealing with modeling amhtrol of inverted pendula systems still use the
brushed direct-current (DC) motor as a high-perforoe drive to actuate their system. Hence, it was
decided that théPMaCl/Inverted Pendula Motorsublibrarywould presently contain a single block:
theDC Motor for Inverted Pendula Systems, which implements the mathematical model of esbea
direct-current (DC) motor in form of a voltage-torfe or a voltage-to-torque conversion relationship
derived in [1]. Appending the DC motor model toiaverted pendula system yieldvaltage model
of the system.
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Fig. 5 The dynamically changing dialog box of the D Motor for Inverted Pendula Systems block

The appearance of the block and the dynamic bloagkncan be adjusted to correspond with
the type of inverted pendula system (classicaliytais associated with (Fig. 5).

4 Implementation of State-Feedback Control Algorithms

It is well-known from experience that, once relehaed independently of the initial state, an
inverted pendula system will always stabilize wathpendula in their natural hanging position, ire.
their stable equilibrium. The principal control ebtjive for all considered inverted pendula systems
was thereforeto stabilize all pendulum links in the vertical ight (inverted) position which
represents the unstable equilibrium of the syst®everal additional problems (subobjectives) were
approached and solved:

» stabilizing the system following the pendulum’diedideflection (nonzero initial conditions)
e compensation of a time-constrained (impulse) omagent (step) disturbance input signal,
» tracking a desired position (reference trajectoffythe base.

Linear state-feedback control was emphasized agrtheipal technique for the control of the inverte
pendula systems since control of several degreée@dom at once can only be ensured if the whole
state vector is taken into consideration.

4.1 Linear Approximation of Inverted Pendula Systems

To be able to employ linear contrgchniques, the linear approximation of the nomline
inverted pendulum system needs to be obtainednidi®n equations generated by erivator are
first rewritten into the standard (minimal ODE -dimary differential equation) form [8]:

M (0(t))6(t) + N (0(t).0(1))0(t) + P(o(t)) =V (t) 4)
which provides the only way to express this kingydtem in the nonlinear state-space form of

X(t) = f (x(t).u(t). )

) = o(x(t)u(t).§ ©

by defining the state vector ag) =(6(t) 6(t))Tand isolating the second derivatigt) from (4).



All inverted pendula systems included in tRéaC were modeled in a way which defines the
“all upright” equilibrium asx(t) = x =0". If the inputu(t) = us =0, then the state-space description
of the continuous linearized system is given as
x(t) = Ax(t) +bu(t) ®)
y(t) =Cx(t) + du(t) ’
and is obtained by expanding (5) into the Tayloriese around a given equilibrium point and
neglecting the terms of the order greater than 1.
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Fig. 6 Inverted Pendula Model Linearizator & Discretizer with the linearized and discretized state-spee

matrices of the classical double inverted penduluraystem

The process of transformation of the Lagrange nmasttieal model of an inverted pendulum
system into a linearized state-space matrix formleaconsiderably sped up with help of another GUI
application designed as part of tiRMaC: the Inverted Pendula Model Linearizator & Discretizer
(Fig. 6). In case the type of inverted pendulaesysfclassical/rotary), model parameters and opeyati
(equilibrium) point have been provided by the uslee, application generates the numeric form of the
A, b, C, d continuous state-space matrices (see (6)) ofytsters in a selected operating point. In case
a discrete-time model is required, thimearizator & Discretizerreturns the discretized state-space
matricesF, g, C, d of the chosen inverted pendula system provideds#émepling period constaiit,
was entered and the continuous-time matrices Hesady been successfully computed.

4.2 Inverted Pendula Control

The expandednverted Pendula Contrasublibrary of thelPMaC chiefly provides software
support for the state-feedback methods of contraflesign for inverted pendula systems. Most
importantly, theState-Feedback Controller with Feedforward Gain block implements the standard
state-feedback control law calculated either framdontinuous-time state-space description

u(t) = U () + v (9 + (9= k(9 + K W)+ d( ), )
or from the discrete-time linear state-space dpson

u(i) =ug (i) +uy (i) + dy (i) = =k pX(i) + k eoW(i) + d, (i) . (8)
wherek (k, ) is thefeedback gainvhich brings the state vectat(t) (x(i)) into the origin of the state

spaceky is thefeedforward (setpoint) gaiwhich makes the output track the reference comnaawd
d,(t) (dy(i)) is the unmeasured disturbance [1][2][3][9][10heTpreferred state-space description is



selected in the dynamic block mask (Fig. 7) whitdoaallows the user to choose the method to
determine the feedback gaik (k,) from between the pole-placement algorithm and lthear

quadratic regulationLQR) optimal control method. To match a particular tcoinsubobjective, the
block’s appearance may be adjusted by optionallegabr disabling of the reference command input

w(t) (w(i)) and/or the disturbance inpud, (t) (d,(i)).
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Fig. 7 The dialog box of theState-Feedback Controller with Feedforward Gain block, dynamically changing

according to the chosen method

The structure of th&tate-Feedback Controller with Summator block implements a summator
v(i) of all past error values [11], which ensures tinat $ystem output will track the changes in the
reference command and eliminate the influence ohpeent disturbances. The control law is given as

u(i) =ug (i) + ug (i) + us(i) = =kyx (i) +kw(i) +v(i), (9)
The layout of the block mask once again allowsuber to adjust the number of block input ports to
match a control subobjective and to compute thee-$edback vectok, using a preferred method
and state-space description.

The Luenberger Estimator block provides a complete, reconstructed statéovdyy evaluating
a model of the original discrete-time system ingtracture:

R(i+1) =Fx(i)+qu(i) + L(y() -cx()) (10)
where L is the estimator gain matrix arii) is the reconstructed state vector.

5 Inverted Pendula Demo Simulations Section — Overview

The Inverted Pendula Demo Simulatiossction, accessible through the root directoryhef
IPMaC, displays a structured set of links to simulasehemes which demonstrate the functionality of
the designed library blocks. Each demo scheme eatbessed by doubleclicking a block that briefly
describes the issue it solves. Making a classikeathblock to act as a link to another file involves
creating arOpenFcncallback function within th&lock Properties

Compared to th®emo Simulationsection of the 2009 version of the library, théemion of
links has now been notably expanded to includedemvariety of addressed problems. The most
significant changes to tigemo Simulationsection of théPMaC were the following:
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Fig. 8 Structure of the root directory of the DemaSimulations section

» the rotary single inverted pendulum model was thiceed into the library

« a DC motor block was implemented into a separawditsary; bothforce/torque modeland
voltage modelsf inverted pendula were used in simulations

< the control section was expanded to include miate$eedback controller blocks and control
schemes; control algorithms were verified usinggwmplemented simulation model

* the tree structure of tHeemo Simulationsection was completely revised (Fig. 8).

5.1 Open-loop Dynamic Analysis

Evaluatory open-loop responses to an impulse sigaed performed for all analyzed nonlinear
simulation models both without the motdor¢ce/torque modgland with the motorvpltage modél
The respective simulation schemes can be locatéideiNonlinear AnalysisandNonlinear Analysis
with DC Motor sections. Examples are shown in Fig. 9 (force mofla classical double inverted
pendulum) and Fig. 10 (voltage model of a classoaile inverted pendulum).
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Fig. 10 Classical single inverted pendulum systemitlt a DC motor — simulation scheme and time

behavior results (cart position and pendulum angle)

Reasonable behavior of the open-loop responsdseddimulation models (damped oscillatory
transient state, system reaching the stable equitibpoint with all pendula pointing downward,
visible backward impact of the pendulum/pendula tba base, motor-driven classical inverted
pendulum response being much more rigid than thié$ cotary equivalent) means the models can be
considered accurate enough to serve as a reledilged for control algorithms.

5.2 Verifications of Inverted Pendula State-Feedback Catrol

The schemes in thBemo Simulationsection document a number of simulation experisient
which were performed to prove that the implemerm®atrollers are able to meet the required control
objectives for all available simulation models mférted pendula systems.

Each demo simulation scheme is designed as andéndept unit. All computations required for
the simulation to run (model parameter definitistate-space matrices of the linear approximation
necessary for control algorithm design) are prognaoh to occur during the initialization of the
scheme, which eliminates the need for additionafiles: Moreover, if the parameters of the
simulation model are changed by the user in an gpbame, th&inearizator & Discretizertool can
be called from a provided link to obtain modifigdte-space matrices (Fig. 11, Fig. 12).

The example schemes below were picked from Stete-Feedback Contr@nd Summator
Control sections to illustrate the way of interconnecting blocks to control the voltage model of a
rotary single inverted pendulum system. Fig. 1liateghe simulation results given that the control
objective was to maintain the desired arm anglaievakhile keeping the pendulum upright. An
estimator block was included to simulate measur¢fireiations.
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Fig. 11 Rotary single inverted pendulum: simulatiorresults for LQR control with estimator included;

note that the arm is supposed to rotate for exactlg half-circle before returning to its initial position

Finally, it is shown in Fig. 12 that applying stééedback control with feedforward gain on
a system is unsufficient if the steady-state effefcta permanent disturbance input needs to be
eliminated. The compensation of permanent distubsis successfully executed by a LQR algorithm
with a summator included in the control structure.
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Fig. 12 Rotary single inverted pendulum — simulatio results for LQR control with a summator
(integral action)

5.3 Verifications of Inverted Pendula Swing-up

To illustrate the problem of pendulum swing-up, 8veing-up Controlleblock was included in
thelIPMaC/Inverted Pendula Swing-gublibrary. The block implements three heuristitergy-based
control laws (cosine value controller, zero speedtroller and absolute value controller) that swing
the pendulum up from the downward to the uprightildayium [12]. A transition mechanism switches
between swing-up and stabilizing control provided pendulum is sufficiently close to the upright
position. The block mask allows the user to setestving-up method, the input voltage magnitude
and the size of the balancing region.
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Fig. 13 Swing-up and stabilization of the rotary sigle inverted pendulum system — comparison of metls

The effectiveness of the three swing-up methods emmspared in a simulation experiment
involving the rotary single inverted pendulum mo(fat. 13).

6 Conclusion

The purpose of this paper was to present a compsateeand unifying approach to the problem
of modeling and control of classical and rotaryeried pendula dynamical systems. A structured,
thematicSimulinkblock library,Inverted Pendula Modeling and Contr@PMaC), was developed to
serve as a software framework for all solved issUd® library is composed of a set of custom
function blocks which centers around the simulatioodels of the classical single, classical double
and rotary single inverted pendulum system. Angragkpart of the library is thBemo Simulations
section, which is basically a collection of links simulation schemes which illustrate the ways of
interconnecting the blocks to solve various prolsleralated to analysis and control of inverted
pendula systems.



Practical importance of symbolic mathematical safey represented in MATLAB b$ymbolic
Math Toolboxwas demonstrated: general symbolic procedures inglemented that either yield the
motion equations of a mathematical model for a-okesen classical or rotary inverted pendulum
system, or perform the symbolic linear transforomatof a specified system in a chosen equilibrium
point. Applications with graphical user interfacere developed to provide a comfortable and user-
friendly access to both procedures.

The presentedSimulink block library offers solid program support for botodeling and
control of inverted pendula systems, based on tleemm object-oriented approach to problem
solving. Since the library was designed as an apestem with the classical and rotary inverted
pendula simulation models at its core, it will besgible to add a wider variety of controller blocks
and control schemes to the already included semdifack and optimal control algorithms. Model
predictive control algorithms and exact lineariaatare considered among other candidate structures.
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