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Abstract

The accelerated computing on GPUs has been underway for more than 10 years.
GPUs evolved in computer gaming industry and penetrated quickly into high
performance computing due to the evident computing acceleration. This tech-
nical report is devoted to the description of several experiments that were ac-
complished with Nvidia’s GPU Tesla C2050 and GPU supported applications.

1 Background

A graphics processing unit (GPU)1 is a specialized circuit designed to rapidly manipulate and
alter memory in such a way so as to accelerate the building of images in a frame buffer intended
for output to a display. Modern GPUs are very efficient at manipulating computer graphics,
and their highly parallel structure makes them more effective than general-purpose CPUs for
algorithms where processing of large blocks of data is done in parallel. The term GPU was
popularized by Nvidia2 in 1999, that marketed the GeForce 256 as ”the world’s first Graphics
Processing Unit”, a single-chip processor with integrated transform, that is capable of processing
a minimum of 10 million polygons per second.

These days GPUs are used in personal computers, workstations, and game consoles. GPU
provides many advantages in demanding numerical computation. Matlab has been designed for
numerical [1, 2] as well as technical [3] computation and directly supports Nvidia’s GPU. Matlab
supports Nvidia CUDA-enabled GPUs with compute capability version 1.x or higher, such as
Tesla 10-series and 20-series GPUs.

2 Methods

Matlab supports the GPU computation within Parallel Computing Toolbox, which is a dedicated
to parallel computation and supports GPU in Matlab R2010a. There are several demos, but
the demos do not run on any Nvidia graphic card. The GPU has to support the compute
capability 1.3 and higher. Therefore there was preliminary failure to run the demos on the
Lenovo notebook equipped with Nvidia GeForce 9300M GS. Due to the previous reason, a new
CPU-GPU workstation was built. Parameters of the workstation were CPU Intel Core2 6300
1.86GHz processor, 2GB RAM, Nvidia Tesla C2050, CUDA Driver v4.0.1 and OS Linux CentOS
(v2.6.18-238.12.1.el5).

Several GPU experiments included: (i) Data manipulation on Nvidia Tesla GPU, (ii)
GPU-accelerated Matlab operations and (iii) CPU/GPU benchmarking. Implemented GPU
features in Matlab were investigated and challenged with other competitive software products
and solutions. These were mainly Jacket/libJacket from AccelerEyes3. The first one installs as
a plug-in into Matlab and the second one is a stand alone library to be used with high-level
languages such as C/C++ or Fortran. Both libraries are to accelerate computation on a GPU.

3 Results

First, series of experiments were tests if the CUDA had been correctly installed. There are many
examples in C/C++/OpenGL at the CUDA SDK to confirm the correct installation. Second, we

1www.wikipedia.org
2www.nvidia.com
3Sprinx Systems has been a re-seller of Tesla GPUs, CPU-GPU workstations as well as Jacket software.



have experimented with all GPU applications which are a part of Parallel Computing Toolbox in
Matlab such as paralleldemo gpu fft, paralleldemo gpu fft2, paralleldemo gpu arrayfun,
paralleldemo gpu backslash and paralleldemo gpu devices. These paralleldemo gpu fft,
and paralleldemo gpu fft2 are applications of a Fast Fourier Transform (FFT) on a GPU. The
first one uses FFT to find the frequency components of a buried in a noisy time-domain. The
second one performs a two-dimensional FFT to calculate far-field diffraction patterns. These
diffraction patterns are usually observed when a monochromatic light passes through a small
aperture. That is an example of Young’s double-slit experiment.

The most of the time we spent with paralleldemo gpu backslash. This demo is a bench-
mark that solves a linear system on the GPU (x = b/A). The program calculated matrices4 from
the size of 322 to 8, 1922. We also experimented with the maxMemory parameter. The parame-
ter allocates the amount of the system memory in GB available to the CPU and the GPU. The
values of the parameter were set from 0.125 to 1.95. When the parameter increased over 0.125,
matrices up to 8, 1922 were calculated. Otherwise, it was only to the the 4, 0962 sizes. The final
graphs depicted speedups Sp of CPU-GPU over CPU. The paralleldemo gpu devices demo
showed us CUDA description, parametrization and configuration of the CPU-GPU workstation.
Third, we also experimented with Jacket and libJacket on the workstation. Due to time con-
strains, we did not reach enough clear, sufficient and convincing results to be reported. Anyway,
the both libraries offer acceleration in the computation on a GPU.
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Figure 1: FFT. FFT finds the frequency components of a buried in a noisy time-domain done
by paralleldemo gpu fft (left). The paralleldemo gpu fft2 application performs a two-
dimensional FFT to calculate far-field diffraction patterns (right).
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Figure 2: Single precision. The figures depict the functional dependency of computing power
(Gigaflops) on the size of a matrix up to 4, 0962 (left) and up to 8, 1922 (right). These are results
from the single precision computation of parallel gpu backslash.

4 Conclusion

This was our first serious experimental attempt with GPUs. We built the CPU-GPU workstation
to support our experiments. Then, we run several tests in C/C++ and OpenGL to confirm the

4The size of a square matrix Am,m is simply denoted as m2 in the report.
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Figure 3: Double precision. The figures depict the functional dependency of computing power
(Gigaflops) on the size of a matrix up to 4, 0962 (left) and up to 8, 1922 (right). These are results
from the double precision computation of parallel gpu backslash.
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Figure 4: Speedup comparisons on precisions. The figures depict the functional dependency of
Speedup Sp on the size of a matrix up to 4, 0962 (left) and up to 8, 1922 (right). These are
results from the single and double precision computations of parallel gpu backslash.

CUDA installation and the capability of Tesla GPU. Later, we focused on GPU applications in
Matlab and experiments with Jacket/libJacket.
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