
BENCHMARKING THE PERFORMANCE OF A DSPIC
CONTROLLER PROGRAMED WITH AUTOMATICALLY

GENERATED CODE
V. Lamberský, J. Vejlupek

Abstract

This paper benchmarks a midrange MCU from Microchip (dsPIC33FJ family) used
as a controller for a magnetic levitation plant. Basic control algorithms (slightly
modified PID and State Space) are tested to present a rough idea of how long it takes
to compute one iteration of the control algorithm loop. Beside this, the significance of
various optimisation parameters for the code generation process is demonstrated.
The measured results demonstrate how important the proper setting of data type
arithmetic and Matlab optimisation parameters is.

1 Introduction

Rapid prototyping tools are not new, however their use is becoming more frequent as it reflects
the market need for shortening the development cycle together with increasing the computing power
of embedded processors [1, 2, 3]. In this area, Matlab becomes the industrial standard tool for
designing controllers for various systems [4]. Matlab offers several packages [5] and third party tools
[6], which allow direct code generation from a simulation scheme. Once the controller is designed in
the Simulink environment, the code for the embedded processor is generated almost automatically,
without further need to modify the simulation model.

The Simulink was originally designed for simulating systems behaviour on a desktop computer.
The Simulink language is very distinct from low-level programming languages, as it uses high
accuracy floating-point variables (usually 64 bits) and does not treat system resources efficiently
(when the simulation is run without compilation). Therefore to be able to generate efficient C-code
from the Simulation scheme, additional toolboxes are needed to overcome this problem [5].

The quality of the code generated from Simulink can be affected by changing various
parameters. At the simulation level, it is advised to use data types appropriate for the target platform.
The code generation process is affected by modifying the simulation and code generation parameters.
At the last step, the C compiler translates the C code to CPU instructions. In the last stage, C30
compiler properties allow generating code optimised for speed or low memory usage.

The code generation process is quite complex and consists of several steps as mentioned above.
This complexity makes it very difficult to estimate the computing power required for various
algorithms implemented in the embedded processor with a limited set of instructions and variable
length [7]. Beside this, it is generally not known how important optimisations set as parameters are for
code generation. To test these properties, the experimental plant was controlled with various
algorithms generated with different optimisation settings.

2 Benchmarked plant and controller description

The control algorithm performance is demonstrated on a magnetic levitation plant. The primary
focus is not controller quality (e.g. control precision, response to disturbances) but the computing time
needed to perform one step of the control task. Accordingly, the controllers used were benchmarked
without evaluating their accuracy and response to disturbances.

The controller is a dsPIC33FJ128MC804 with the core running at 20 MHz clock frequency.
This controller is connected to the plant input (analogue output from MCU) and sensors (analogue
input to MCU) integrated into the controlled plant. The micro-controller is also connected to the
computer via an RS232 interface. The testing apparatus is illustrated in Fig.1.

Figure 1: Controller connected to magnetic levitation plant.

The position and current are measured (inputs for the micro-controller). Since the micro-
controller does not have an integrated DAC converter, a separate device for generating analogue
output was attached via SPI to the main micro-controller. This DAC7715 device converts output from
the micro-controller (digital value) to voltage suitable for the current controller integrated in the
magnetic levitation plant.

 The MCU has to handle a control loop and serving peripherals. The block scheme of the
implemented algorithm is illustrated in Fig. 2.

Figure 2: Implemented control algorithm scheme.

Peripheral configuration

Analog input

UART communication

Output to SPI

UART comunication

Controll algorithm

3 Variables affecting the code generation process

The code generation process from the Simulink model can be divided into two main parts. In the
first part, the C-code is generated based on the Simulink model. In the second part, the C-code is
translated into an MCU instructions sequence. There are a lot of parameters which are set in Matlab
and C compiler environments. The main groups of these parameters are described below.

The performance of the embedded CPU without FPU is strongly influenced by the arithmetic
and precision used. However, converting the code to fixed-point arithmetic might be in some cases
very difficult or even impossible [8]. The data type arithmetic used is set in block parameters (Fig. 3).

Figure 3: Settings for various data types.

The parameters for C code generation from the Simulink model are set in a Configuration Parameters
dialog (Fig. 4). These parameters affect generating loop cycles, variables overflow protection, bitwise
boolean representation, variables initialization and other properties.

Figure 4: Dialog for changing parameters for the Matlab code generation process.

C compiler has a huge number of optimisation parameters [9]. Therefore, only the main groups
will be tested. These optimisations are enabled via setting the compilation parameters passed to the
compiler. Mplab has a graphical interface for setting the main optimisation levels (Fig. 5).

Figure 5: Graphical dialog for C compiler settings.

A computing time of one cycle was measured. This time includes all operations performed in
the control loop, reading values from peripherals and sending data to a computer. The computing time
is measured using a timer synchronized with the simulation. (The counter is reset when the simulation
starts and its value is read when the iteration is completed.)

The algorithms described in the next section were tested with various optimisations to
demonstrate the computing power of the dsPIC33FJ family and the importance of optimisation
parameters.

4 Tested algorithms

One of the most popular and used control algorithms is PID. This algorithm uses one input
(measured position) and provides one output (required current for the coil). Since the regulated plant is
highly non-linear, a simple compensation was introduced in the controller scheme (see Fig. 6).

P

I

D

Nonlinearity
compensation

Figure 6: Simulink PID controller scheme.

The LQI controller was implemented to demonstrate controller performance with an advanced
algorithm. The system (LTI with three states) was identified based on the measured input (voltage for
the current controller) and output (position). The controller scheme is illustrated in Fig. 7.

Integrator

LQi State space model

Figure 7: Simulink LQi controller scheme.

For testing purposes, the optimisation parameters were divided into main groups. These groups
are presented in the table below (table 1).

Table 1: OPTIMISATION OPTIONS GROUPS FOR VARIOUS CODE GENERATION STEPS.

Used arithmetic Real data type Integer data type

Simulink code generation
optimizations

None Default settings All enabled

Mplab C compiler None Default optimisations Maximize execution speed

5 Results

The measured execution time of a single iteration varies slightly. This is mainly caused by
interrupt driven routines for serving MCU peripherals. The modus variable is chosen to represent the
time needed to perform one iteration of the control algorithm. The measured times related to various
Matlab optimisations settings are summarized in Fig. 8.

Figure 8: Computing time affected by setting different optimisations for code generation.

The measurements of C30 optimisations efficiency are provided in figure 9. The C-code
generated in the previous step from Matlab was translated with a C30 compiler several times, each
time with different optimisation levels (none, default and maximum execution speed).

The measured results are very surprising. Almost no computing time improvement was
measured when the optimisations were set to prefer execution speed compared to code without any
optimisations. Since the Simulink and C30 compiler provide similar optimisation parameters
(unrolling loop, in-line parameters) it seems natural to expect similar results. However the Simulink
performs some optimisations which change the algorithm behaviour (e.g. protecting variables from
overflow) and these are not available in the C30 compiler. Removing these types of “unnecessary”
protection leads to a tremendous rise of computing speed. However, some unwanted situations might
happen, e.g. in the case of variables overflow.

Figure 9: Computing times for C-code generated from the Simulink with default, all optimisations
enabled and disabled translated to CPU instructions with different C30 settings.

6 Conclusion

For a simple algorithm it doesn’t seem to be important using optimisation parameters for the
compiler. Based on measured data, compiler optimisations do not provide significant improvement in
computing time. However optimisations for code generation in the Simulink should be considered,
especially in cases where various protective mechanisms are not necessary. Where the conversion is
possible, the use of fixed-point arithmetic is recommended, as it significantly increases computing
speed on devices without FPU.

Acknowledgement
The work presented in this paper has been supported by research project FSI-S-11-15 "Design, testing
and implementation of control algorithms with use of non-linear models of mechatronics systems".

References

[1] Kuhl, M.; Reichmann, C.; Protel, I.; Muller-Glaser, K.D.; , "From object-oriented modeling to
code generation for rapid prototyping of embedded electronic systems," Rapid System Prototyping,
2002. Proceedings. 13th IEEE International Workshop on , vol., no., pp. 108- 114, 2002

[2] Duma, R.; Dobra, P.; Abrudean, M.; Dobra, M.; , "Rapid prototyping of control systems using
embedded target for TI C2000 DSP," Control & Automation, 2007. MED '07. Mediterranean
Conference on , vol., no., pp.1-5, 27-29 June 2007

[3] Grepl, R. Real-Time Control Prototyping in MATLAB/Simulink: review of tools for research and
education in mechatronics IEEE International Conference on Mechatronics (ICM 2011-13-15
April, 2011, Istanbul), 2011.

[4] Bartosinski, R.; Hanzalek, Z.; Waszniowski, L.; Struzka, P.; , "Processor Expert Enhances Matlab
Simulink Facilities for Embedded Software Rapid Development," Emerging Technologies and
Factory Automation, 2006. ETFA '06. IEEE Conference on , vol., no., pp.625-628, 20-22 Sept.
2006

[5] Matlab Real-Time Workshop, Real-Time Workshop Embedded Coder Documentation [Online].
Available: http://www.mathworks.com/products/embedded-coder/index.html

[6] L. Kerhuel. (2010) Simulink block set embedded target for microchip devices. [Online]. Available:
http://www.kerhuel.eu/wiki/Simulink_-_Embedded_Target_for_PIC

[7] Roscoe, A.J.; Blair, S.M.; Burt, G.M.; , "Benchmarking and optimisation of Simulink code using
Real-Time Workshop and Embedded Coder for inverter and microgrid control applications,"
Universities Power Engineering Conference (UPEC), 2009 Proceedings of the 44th International ,
vol., no., pp.1-5, 1-4 Sept. 2009

[8] Osborne, W.G.; Cheung, R.C.C.; Coutinho, J.G.F.; Luk, W.; Mencer, O.; , "Automatic Accuracy-
Guaranteed Bit-Width Optimization for Fixed and Floating-Point Systems," Field Programmable
Logic and Applications, 2007. FPL 2007. International Conference on , vol., no., pp.617-620, 27-
29 Aug. 2007

[9] Microchip Technology Inc. The Embedded Control Solutions Company® MPLAB® C30 C
Compiler User’s Guide [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/C30_Users_Guide_51284f.pdf

Vojtěch Lamberský, Josef Vejlupek

Ústav mechaniky těles, mechatroniky a biomechaniky
Fakulta strojního inženýrství
Vysoké učení technické v Brně
Technická 2896/2
616 69 Brno

