BENCHMARKING THE PERFORMANCE OF ADSPIC
CONTROLLER PROGRAMED WITH AUTOMATICALLY
GENERATED CODE

V. Lambersky, J. Vejlupek

Abstract

This paper benchmarks a midrange M CU from Microchip (dsPIC33FJ family) used
as a controller for a magnetic levitation plant. Basic control algorithms (dightly
modified PID and State Space) are tested to present a rough idea of how long it takes
to compute one iteration of the control algorithm loop. Beside this, the significance of
various optimisation parameters for the code generation process is demonstrated.
The measured results demonstrate how important the proper setting of data type
arithmetic and M atlab optimisation parametersis.

1 Introduction

Rapid prototyping tools are not new, however thiseg is becoming more frequent as it reflects
the market need for shortening the developmenteciyariether with increasing the computing power
of embedded processors [1, 2, 3]. In this area,lddlabecomes the industrial standard tool for
designing controllers for various systems [4]. Mhatbffers several packages [5] and third partystool
[6], which allow direct code generation from a slation scheme. Once the controller is designed in
the Simulink environment, the code for the embedpletessor is generated almost automatically,
without further need to modify the simulation madel

The Simulink was originally designed for simulatisygstems behaviour on a desktop computer.
The Simulink language is very distinct from low-#éwrogramming languages, as it uses high
accuracy floating-point variables (usually 64 bigs)d does not treat system resources efficiently
(when the simulation is run without compilationhérefore to be able to generate efficient C-code
from the Simulation scheme, additional toolboxesreeded to overcome this problem [5].

The quality of the code generated from Simulink dam affected by changing various
parameters. At the simulation level, it is advisedise data types appropriate for the target platfo
The code generation process is affected by modjfttie simulation and code generation parameters.
At the last step, the C compiler translates theo@ecto CPU instructions. In the last stage, C30
compiler properties allow generating code optimiedspeed or low memory usage.

The code generation process is quite complex ansigis of several steps as mentioned above.
This complexity makes it very difficult to estimatee computing power required for various
algorithms implemented in the embedded processtr ailimited set of instructions and variable
length [7]. Beside this, it is generally not knothow important optimisations set as parametersare f
code generation. To test these properties, the riexpatal plant was controlled with various
algorithms generated with different optimisatiottings.

2 Benchmarked plant and controller description

The control algorithm performance is demonstrate@ anagnetic levitation plant. The primary
focus is not controller quality (e.g. control pitoin, response to disturbances) but the computimg t
needed to perform one step of the control taskcoAdingly, the controllers used were benchmarked
without evaluating their accuracy and responsediuidbances.

The controller is a dsPIC33FJ128MC804 with the aamening at 20 MHz clock frequency.
This controller is connected to the plant inputalague output from MCU) and sensors (analogue
input to MCU) integrated into the controlled plafithe micro-controller is also connected to the
computer via an RS232 interface. The testing appsia illustrated in Fig.1.

IIIHIIlHIHIHIH

Figure 1: Controller connected to magnetic levitagplant.

The position and current are measured (inputs Hier micro-controller). Since the micro-
controller does not have an integrated DAC convedeseparate device for generating analogue
output was attached via SPI to the main micro-atletr. This DAC7715 device converts output from
the micro-controller (digital value) to voltage tlile for the current controller integrated in the
magnetic levitation plant.

The MCU has to handle a control loop and serviagpherals. The block scheme of the
implemented algorithm is illustrated in Fig. 2.

I A}
1 1
' dsPIC MASTER _ Configure Model for UART 2 Corfig :
! 33M128MCE04 PIN Mapping dsPIC Target SPI Config Baud: 115200 (-1.36%)f |
! 20.00 MIPS {double-click) Bytes / Step: 11.4 1
1 1
' Master PIN Mapping Configure Model SPI Configuration UART Corfiguration |
: for dsPIC '
N e e e e e e e e e e o e e e e e o e o e i
Analog input___________ Controll algorithm ~ Qutput to SPI
P T e m e e =
- e) : i
1
! ADC 1 : ! | SPIcommunication 1
' AN_5 4 : ! e 1
current . nf outt 1
: ADC Input : ' n utt |— P T e .
L - : » in2 1 1 :
[piniiniiniiniiniie —— 1 1 Qut2 . 'l 0
4 [1 1 ! : ~ :
: Qut1 ey va : ' » in3 : : !
| . 1 .
' Out2 i T : ol i Out3 —1 1! 1 TX_Labview_MATLAB :
! out3 1o ! ! 1 1 !
1 1 1 o Ins 1 1 1
! Outd »lc i " Outs [—+ 1wl 2 !
1 — | 1 1 1
1 UARTIN Embedded ' 1 P —— 1 . 1
! MATLAB Function : ! Y 1 f UART out (multiplexed) 1
1 1 ' N 1
L }) N e E e e e == e = mmmEmm_—__—__—_eEeEmEmEm=————

UART communication UART comunication

Figure 2: Implemented control algorithm scheme.

3 Variables affecting the code generation process

The code generation process from the Simulink meoaelbe divided into two main parts. In the

first part, the C-code is generated based on thaulBik model. In the second part, the C-code is
translated into an MCU instructions sequence. Theeea lot of parameters which are set in Matlab
and C compiler environments. The main groups cdipgarameters are described below.

The performance of the embedded CPU without FP&trengly influenced by the arithmetic

and precision used. However, converting the codixeal-point arithmetic might be in some cases

very difficult or even impossible [8]. The data ¢yarithmetic used is set in block parameters @ig.

Gain

Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u™K).

Output minimum: Qutput maximums:

0 O

Output data type: Inherit: Inherit via internal rule F | == |

i Inherit: Inherit via internal rule
[Lock output dat Inherit: Inherit via back propagation

: Inherit: Same as input
Integer rounding m -
9 g double

[7] Saturate on int¢ Single
int8

uints
intld
int32 -|

‘-:J uint32

e fidt(1,16,0)

oint tools

Apply

E Function Block Parameters: Gain ﬁ

fixdt(1,16,20,0)
<data type expression>

Figure 3: Settings for various data types.

The parameters for C code generation from the $nkwhodel are set in a Configuration Parameters

dialog (Fig. 4). These parameters affect generdtiog cycles, variables overflow protection, bitevis

boolean representation, variables initializatiod ather properties.

¥
% Configuration Parameters: ilustrace/Configuration {Active) &J
Select: Simulaticn and cede generation o
-~ Solver [7] Block reduction [¥] Conditional input branch execution
e R 7] Implement logic signals as Boolean data (vs. double) [7] Signal st
ement logic signals as Boolean data (vs. double) [V] Signal storage reuse
- Optimization P gic Sig () [sig g _
[=-Diagnostics [T] mline parameters Configure ..
- Sample Time R
- Data Validity Application lifespan (days) 1 L
- Type Conversion [7] Use integer division to handle net slopes that are reciprocals of integers
- Connectivity
- Compatibility Code generation
~Model Referencing Parameter structure: |NonHierarchical
- Saving
. Stateflow [] optimize using the specified minimum and maximum values
- Hardware Implementation Signals
- Model Referencing
O ; [¥] Enable local block outputs [¥] Reuse block outputs
= Simulation Target
E""Symhols [¥] Eliminate superfluous local variables (expression folding) Inline invariant signals A
J- [0K] I Cancel | [Help] I Apply ‘

Figure 4: Dialog for changing parameters for thel&dacode generation process.

C compiler has a huge number of optimisation patared9]. Therefore, only the main groups
will be tested. These optimisations are enabledseiting the compilation parameters passed to the
compiler. Mplab has a graphical interface for setthe main optimisation levels (Fig. 5).

y B
Build Options For Project "Rizenl.mcp” lilé]
Diectores | CustomBuid | Tmee | ASM30/C30 Sute
MPLAB ASM3D | MPLAB C30 | MPLAB LINK30

Categaries: I Dphirnizatiorn -]

Generate Command Line

Ophirmization Level Specific Ophmizations
[T Unrall loops
[7] Omit frame poirter
E [Procedural abstraction
o
]
code size
Pre-Optmization Inst. 5cheduling: lEnahIe "
Pozt-Optimization [nst. S cheduling: | Ehahble - |
Irherit global settings | Restore Defaults

-g -03 -frchedule-ingng -fzchedule-ingns2

[T Use <emnate Settings

-g 03 -fechedulesinzng fachedule-insnz2

[oK I | Stomo | Pouzit

Figure 5: Graphical dialog for C compiler settings.

A computing time of one cycle was measured. Thwetincludes all operations performed in
the control loop, reading values from peripherald sending data to a computer. The computing time
is measured using a timer synchronized with theuksition. (The counter is reset when the simulation
starts and its value is read when the iteraticmompleted.)

The algorithms described in the next section wesstetl with various optimisations to
demonstrate the computing power of the dsPIC33Fdlyfaand the importance of optimisation
parameters.

4 Tested algorithms

One of the most popular and used control algoritienBID. This algorithm uses one input
(measured position) and provides one output (reduurrent for the coil). Since the regulated plant
highly non-linear, a simple compensation was inticedi in the controller scheme (see Fig. 6).

: Nonlinearity
' compensation

1300

j|£

2048

(D

Figure 6: Simulink PID controller scheme.

The LQI controller was implemented to demonstratetller performance with an advanced
algorithm. The system (LTI with three states) waentified based on the measured input (voltage for
the current controller) and output (position). Toatroller scheme is illustrated in Fig. 7.

State space model

2048

Figure 7: Simulink LQi controller scheme.

For testing purposes, the optimisation parameterg wivided into main groups. These groups
are presented in the table below (table 1).

Table 1: @TIMISATION OPTIONS GROUPS FOR VARIOUS CODE GENERATIGBVEPS

Used arithmetic

Real data type

Integer data type

Simulink code generation
optimizations

None

Default settings

All enabled

Mplab C compiler

None

Default optimisations

Maximigxecution speed

5 Reaults

The measured execution time of a single iteratiarieg slightly. This is mainly caused by
interrupt driven routines for serving MCU peripHerarhe modus variable is chosen to represent the
time needed to perform one iteration of the coraitgbrithm. The measured times related to various
Matlab optimisations settings are summarized in &ig

<1 | | |
SS double
SS fixed
. = Simulink all optimizations
doubl enabled
PID double B Simulink all optimizations
7 disabled
PID fixed m Simulink default setting
0s 0.0001 s 0.0002 s 0.0003 s 0.0004 s 0.0005 s

Figure 8: Computing time affected by setting difetroptimisations for code generation.

The measurements of C30 optimisations efficienay @rovided in figure 9. The C-code
generated in the previous step from Matlab wasstated with a C30 compiler several times, each
time with different optimisation levels (hone, dgéffzand maximum execution speed).

The measured results are very surprising. Almostcomputing time improvement was
measured when the optimisations were set to pefecution speed compared to code without any
optimisations. Since the Simulink and C30 compipgovide similar optimisation parameters
(unrolling loop, in-line parameters) it seems natuo expect similar results. However the Simulink
performs some optimisations which change the dlgoribehaviour (e.g. protecting variables from
overflow) and these are not available in the C3@pmter. Removing these types of “unnecessary”
protection leads to a tremendous rise of compupeed. However, some unwanted situations might
happen, e.g. in the case of variables overflow.

PID fixed all enabled
PID fixed all disabled

PID fixed default

M C30 optimize for maximum

PID double all | speed

enabled | m C30 optimisations disabled
PID double all

disabled

PID double default

0.00E+00s 5.00E-05s 1.00E-04s 1.50E-04s 2.00E-04s 2.50E-04s 3.00E-04s 3.50E-04s

Figure 9: Computing times for C-code generated floenSimulink with default, all optimisations
enabled and disabled translated to CPU instructiatisdifferent C30 settings.

6 Conclusion

For a simple algorithm it doesn’t seem to be impairtusing optimisation parameters for the
compiler. Based on measured data, compiler opttiaisado not provide significant improvement in
computing time. However optimisations for code gatien in the Simulink should be considered,
especially in cases where various protective mashenare not necessary. Where the conversion is
possible, the use of fixed-point arithmetic is moeended, as it significantly increases computing
speed on devices without FPU.

Acknowledgement
The work presented in this paper has been suppbytegsearch project FSI-S-11-15 "Design, testing
and implementation of control algorithms with us@on-linear models of mechatronics systems".

References

[1] Kuhl, M.; Reichmann, C.; Protel, I.; Muller-Glasé¢,D.; , "From object-oriented modeling to
code generation for rapid prototyping of embeddedtmnic systems,Rapid System Prototyping,
2002. Proceedings. 13th IEEE International Worksbop vol., no., pp. 108- 114, 2002

[2] Duma, R.; Dobra, P.; Abrudean, M.; Dobra, M.; , pRaprototyping of control systems using
embedded target for TI C2000 DSR;ontrol & Automation, 2007. MED '07. Mediterranean
Conference onvol., no., pp.1-5, 27-29 June 2007

[3] Grepl, R. Real-Time Control Prototyping in MATLAB/fBulink: review of tools for research and
education in mechatronics IEEE International Cariee on Mechatronics (ICM 2011-13-15
April, 2011, Istanbul), 2011.

[4] Bartosinski, R.; Hanzalek, Z.; Waszniowski, L.;\&ka, P.; , "Processor Expert Enhances Matlab
Simulink Facilities for Embedded Software Rapid Bleyment,"Emerging Technologies and
Factory Automation, 2006. ETFA '06. IEEE Conferepnoe vol., no., pp.625-628, 20-22 Sept.
2006

[5] Matlab Real-Time Workshop, Real-Time Workshop Edd#mdCoderDocumentation [Online].
Available: http://www.mathworks.com/products/embedéatoder/index.html

[6] L. Kerhuel. (20105imulink block set embedded target for microchigads [Online]. Available:
http://www.kerhuel.eu/wiki/Simulink_-_Embedded_Tetgfor PIC

[7] Roscoe, A.J.; Blair, S.M.; Burt, G.M.; , "Benchmiawd and optimisation of Simulink code using
Real-Time Workshop and Embedded Coder for invested microgrid control applications,”
Universities Power Engineering Conference (UPE©®N2Proceedings of the 44th International
vol., no., pp.1-5, 1-4 Sept. 2009

[8] Osborne, W.G.; Cheung, R.C.C.; Coutinho, J.G.Fk, Mi.; Mencer, O.; , "Automatic Accuracy-
Guaranteed Bit-Width Optimization for Fixed and &lag-Point SystemsField Programmable
Logic and Applications, 2007. FPL 2007. Internatib@onference onvol., no., pp.617-620, 27-
29 Aug. 2007

[9] Microchip Technology Inc. The Embedded Control Siohs Company MPLAB® C30 C
Compiler User’s Guide [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/CB8ers_Guide 51284f.pdf

Vojtéch Lambersky, Josef Vejlupek

Ustav mechanikyétes, mechatroniky a biomechaniky
Fakulta strojniho inZenyrstvi

Vysoké w&eni technické v Brh

Technicka 2896/2

616 69 Brno

