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Abstract

Acoustic analysis of speech is a noninvasive technique that has been proven to
be an effective tool for the objective speech assessment. In pathological speech
(for example hoarseness) a harmonic-to-noise ratio is one of the most frequently
used parameter because it can reveal an additive noise in voiced parts of speech.
Additive noise is a result of leak of a glottal closure during phonation which
can be a consequence of vocal edema or vocal polyps for example. This paper
deals with an analysis of an iterative algorithm for the estimation of the noise
component in speech.

1 Introduction

Pathological speech signals are commonly corrupted with additive noise and the energy of addi-
tive noise can be used as a parameter for determination of the level of speech pathology [1, 2].
Generally, the speech signal can be described as

x(k) = s(k) + w(k), (1)

where x(k) is a speech signal, s(k) is a periodic part of speech generated by vocal folds and
w(k) is a noise part of speech generated by airflow from lungs. In normal (healthy) speech the
component w(k) is low and almost negligible compared to s(k). In a pathological speech the
energy of w(k) increases due to an imperfect glottal closure which can be caused by, for example,
vocal fold edema, polyp etc.

Well known and often used parameter harmonics-to-noise ratio (HNR) is defined as a
ratio between s(k) and w(k)

HNR = 20 log

(
Ens(k)

Enw(k)

)
[dB], (2)

where Ens(k) is the energy of the periodic component of speech and Enw(k) is the energy of the
noise component of speech.

There is no consensus on how to separate speech signal x(k) to periodic and noise com-
ponent. There are several ways: analysis in the time domain [1], frequency domain [2, 3], using
wavelets [4] or cepstral analysis [5].

This article deals with an analysis of iterative algorithm for a noise component estimation
in frequency domain published by [3] and its implementation in MATLAB.

2 Data

For testing purposes two signals were used – the first is a record of a healthy male and the second
is a record of a male with functional dysphonia. Both signals contain a sustained phonation of
vowel /a/ for cca 0.4 s.
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Figure 1: Example of test signals: (a) healthy, (b) functional dysphonia.

3 Iterative algorithm description

As mentioned above, this algorithm has been developed by YEGNANARAYANA et al. [3] and
operates in the frequency domain. An input speech signal is segmented into microsegments
the length of M samples and weighted by the Hamming window of the same length. The N -
point DFT (N > M) is applied to every microsegment and spectrum X(k) is obtained. In the
amplitude spectrum |X(k)| two types of regions are found, see Fig. 2:

• Pi – harmonic part of spectrum; contains both the periodic and the noise components of
the input speech signal; the width of these regions corresponds to the length of DFT (N)
and the length of Hamming window used for weighting of the microsegment (M): 2N/M

• Di – dip between harmonic parts; it is assumed that this part contains only the noise
component of the input speech signal; to obtain non-empty dip region Di with d points,
the Hamming window length M should satisfy

M ≥ 4N

f0NT − (d+ 1)
, (3)

where M is the Hamming window length, N is the DFT length, f0 is the fundamental
frequency detected in the analysed microsegment, T is the sampling period (1/fs) and d
is the demanded number of points in dip region Di.

Regions Pi and Di can be identified as

Pi =

{
k|ki −

2N

M
≤ k ≤ ki +

2N

M

}
, (4)

Di =

{
k|ki−1 +

2N

M
≤ k ≤ ki −

2N

M

}
, (5)

where k is spectral line order and ki is a position of and i-th harmonic region Pi.

After locating the regions Pi and Di the iterative algorithm computes IDFT from spectrum
with zeros at harmonic regions Pi and actual values at noise regions Di. Then the N -point DFT
is computed again, harmonic regions Pi are zeroed and so on, see Fig 3. After a few iterations (8
to 10 iterations according to [3]) the noise component is reconstructed with sufficient precision.
To get the harmonic component in the time domain the reconstructed noise component has to
be subtracted from original signal in the time domain.
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Figure 2: Description of harmonic part Pi and noise part Di of the spectrum of a windowed
voice speech segment.
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Figure 3: Block scheme of the iterative algorithm for noise component estimation.

4 Iterative algorithm analysis

An analysis of the algorithm focuses on the two main areas:

• f0 detection and determination of harmonic and noise component in the frequency domain,
• the choice of M , N , d.

4.1 Harmonic and noise regions detection

The first step in the detection of the harmonic and the noise regions Pi and Di is a f0 detection
– f0 is supposed to be the main harmonic component in the speech signal. For this purpose,
an amplitude spectrum is used and the first dominant peak is assumed to be the fundamental
frequency f0. The position k of f0 is then used to determine Pi and Di according to (4) and (5),
see Fig. 4. Positions of the first harmonic regions in every microsegment are shown in Fig. 4.1.

4.2 Choice of M , N , d

Practically, the window length M is fixed for the whole signal and cannot be changed at runtime,
f0 can be different in every microsegment, the only requirement on the parameter d is the non-
zero size. The only parameter that can be changed during the calculation is the DFT length by
zero-padding the input microsegment. Equation (3) has to be transformed to the following form

N ≥ M(d+ 1)

Mf0T − 4
. (6)
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Figure 4: Determination of harmonic regions Pi in amplitude spectrum for 4(a) healthy voice
and 4(b) voice with functional dysphonia.

1 2 3 4 5 6 7 8 9 10 11

115

120

125

130

mikrosegment

f 0 [H
z]

(a)

1 2 3 4 5 6 7 8 9 10
80

90

100

110

120

130

140

mikrosegment

f 0 [H
z]

(b)

Figure 5: Position of the first harmonic regions Pi in records with 4(a) healthy voice and 4(b)
voice with functional dysphonia.

Equation (6) is not defined for

f0 =
4

MsamplesT
=

4000

Mms
(7)

which restricts the choice of the microsegment length. Fig. 6 shows the dependence of a critical
f0 on the microsegment length according to (7).
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Figure 6: Dependence of critical f0 on the microsegment length.

Fig. 7 shows dependence of DFT length N on detected f0 while d = 20, M=100 ms and
fs ∈ {8, 16, 22.05, 44.1} kHz. For f0 > 50 Hz the required N is in acceptable range for all fs.

Fig. 8 shows a block scheme of a modified algorithm which respects a different DFT length
N for different f0. First, f0 with default N is estimated and if noise regions Di in spectrum are
empty due to the f0 being too low, the smallest suitable N is computed and used for iterative
noise component estimation. This modification lets the algorithm use smaller N as default and
in case of high pitched voices or in case of pathological voices with unexpected voice breaks the
required DFT length is adapted.
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Figure 7: Dependence of DFT length on f0.
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Figure 8: Block scheme of the modified iterative algorithm for noise component estimation.

5 Results

Examples of noise components estimated in the test signals are shown in Fig. 9; input algorithm
parameters are the following: fs=8 kHz, M=80 ms (640 samples), d=20, default N=8192 sam-
ples.

Is is obvious that noise component energy of a healthy voice shown in Fig. 9(a) is smaller
relative to overall energy than for a pathological voice depicted on Fig. 9(b). Also HNR is higher
for the healthy voice, which is expected. A summary of results for both test records is shown in
Tab 1.

Table 1: ESTIMATED HARMONICS-TO-NOISE RATIO IN TEST RECORDS.
HNR [dB]

healthy 22.84 ± 4.29
functional dysphonia 2.88 ± 5.05
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Figure 9: Examples of estimated noise components for (a) healthy and (b) functional dysphonia
in one microsegment.
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Figure 10: Estimated HNR in test records.

6 Conclusion

An implementation of modified iterative estimation of noise component in voiced parts of speech
was introduced. The modification reflects various settings of DFT length for various fundamental
frequency. Two records of sustained vowel /a/ were used for testing purposes. The first record
contains a healthy voice and the second record contains a voice with functional dysphonia. In
accordance with the assumption the noise component in the healthy voice is smaller than in the
pathological one.
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