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Abstract 

The paper deals with a nonlinear predictive controller, which is based on 
decomposition principle of system output predictions. Since the superposition 
principle doesn’t hold for the used calculation approach, the controller algorithm 
iteratively corrects the prediction, which also improves the vector of future control 
actions. The number of iterations has influence on regulation quality. Assessment of 
its influence on regulation quality by controlling of a multivariable nonlinear system 
with constraints is aim of this paper. 

1 INTRODUCTION 
An idea to develop a predictive controller which uses utmost knowledge of a controlled system 

was on the beginning. The result of the effort is a Nonlinear Model Predictive Control (NMPC) 
controller with constraints respecting. The controller is relatively easy feasible but its operation is 
quite much time-consuming. The high computational performance is caused by using of a nonlinear 
mathematical model of a controlled system and also by iterative control actions calculation method. 

The increasing number of iterations logical increases time necessary for control actions 
calculation. On the other hand, under certain conditions would have the increased number of iterations 
a positive impact on the quality of regulation. Verification of this assumption on an appropriate system 
is described in this paper.  

2 NMPC CONTROLLER 
The controller uses decomposition of system outputs prediction ŷ  on predictions of free ˆ fry  and 

forced ˆ foy  responses (1)  (more in [1]). 

 ( )( ) ( )( ) ( )0ˆ ˆ ˆ, , ,k k= + ∆fr foy u x y u x y u 0  (1) 

where: 

u  A vector of control actions on a control horizon 
0u  A vector of presumptive control actions on a control horizon 

∆u  A vector of control actions increments on a control horizon 
( )kx  A vector of current states values 

0  A zero vector  

The vectors can be described by equations (2) - (4). The prediction horizon has the same length 
as the control horizon, thus the term ‘horizon’ and symbol N  are used in the paper for both.  
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The vector ( )k j+u  is a vector of manipulated inputs at time instant k+j. Similar ( )0 k j+u  and 
( )k j∆ +u  are vectors of corresponding variables at time k+j. The vector of control actions u can be 

expressed by equation (6). 
 0= + ∆u u u  (6) 

The objective function of the controller (7) consists from three parts. The first is penalization of 
control errors; the second is penalization of manipulated inputs time differences. The last one ensures 
approaching of manipulated inputs to their optimal values in steady state. Also respecting of 
constraints is included in the objective function. 

 ( ) ( ) ( ) ( ) ( )2ˆ ˆ. . . . . .

subject to .

TT TJ ∆ = − − + + − −

∆ ≥
opt optu y w R y w du Q du u u Q u u

S u s
 (7) 

where:  

w   A vector of desired values on the horizon 
du  A vector of u time differences on the horizon  

optu  A vector of inputs optimal values at steady state 
S  A matrix of constraints (inequalities left sides) 
s  A vector of constraints (inequalities right sides) 
R  A square diagonal weighting matrix 
Q  A square diagonal weighting matrix 

2Q  A square diagonal weighting matrix 

The vector optu  contains optimal values of the process inputs to be reached at steady state. The 
vector of inputs time differences du  can be rewritten to equation (8). 
 2 0. .= ∆ +v vdu E u E u  (8) 

The variable vE  is a matrix described by (9) and the matrix 2vE  is described by (10), where I is 
a unit matrix and 0 is a zero matrix. 
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The NMPC controller calculates the prediction of the free response ˆ fry  from a nonlinear 
mathematical model of the controlled system, which can be generally described by (11). The vector 

( )tx&  contains derivation of states ( )tx . 
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The forced output prediction ˆ foy  is calculated from a linear discreet state model (12) of the 
controlled system. The state model was chosen because it can be easy used for a multivariable system. 
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where:  

dA  A states matrix 

dB  An inputs matrix 

dC  An outputs matrix 

x  A vector of states deviation from a linearization point 
u  A vector of inputs deviation from a linearization point 
y  A vector of outputs deviation from a linearization point 

So the forced output prediction can be described by equation (13). The matrix H is described by 
equation (14). 
 ˆ .= ∆foy H u  (13) 
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The controller calculates the vector of control actions u by minimizing of the objective function 
(7). Because constraints are taking into account, the optimization problem has to be solved 
numerically, in this case by Quadratic Programming (QP). Thus it is suitable to transform the 
objective function (7) into QP form (15). 

 ( ) 1 . . .
2

subject to .

TJ c∆ = ∆ ∆ + ∆ +

∆ ≥

u u M u m u

S u s
 (15) 

The matrix M and vector m are for the NMPC controller defined by equations (16) and (17). 
The variable c isn’t important. 
 2. . . .T T= + +v vM H R H E Q E Q  (16) 

 ( )( )( ) ( )2 0 2 0ˆ. . , . . . .T Tk= − + − +fr opt v vm H R y u x w Q u u E Q E u  (17) 

Key for this controller is the vector of presumptive control actions on the horizon 0u . The 
vector ensures time spread iteration what enable to execute the calculation in one iteration. It is 
important to move the main contribution of system outputs prediction on free response because the 
superposition principle doesn’t hold for nonlinear system generally. The free response is calculated 
from the nonlinear model which should give results corresponding more with reality. The vector 0u  
(say at time k) is generated from the previous vector of control actions u what can be described by 
equation (18). 
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The controlled system can be constrained on states x or inputs u ranges. This type of constraints 
is defined by equations (19) and (20) for the objective function (15). 
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where:  

maxu  A vector of upper inputs boundaries on the horizon 

minu  A vector of lower inputs boundaries on the horizon 

maxx  A vector of upper states boundaries on the horizon 

minx  A vector of lower states boundaries on the horizon 

cfrx  A vector of states prediction on the horizon (only states which occurs in constraints) 

uS  A unit matrix 

The matrix 2xS  is defined by equation (21). 
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The controller uses time spread iteration, nevertheless more than one iteration can be executed 
what should have positive influence on regulation quality. The vector of presumptive control actions 

0u  is for the next iteration calculated by equation (22) in such case. 

 ( ) ( ) ( )1
0 0
i i i+ = + ∆u u u  (22) 

The vector of control actions on the horizon u (the controller output) corresponds to the vector 
( )1
0
i+u  from equation (22) for the last iteration. More complex description of the NMPC controller is in 

[2], where is also described the controller realization. 
  



3 Controlled system 
The experiment should be realized on a system, by which is possible to predict the directions of 

all states changes on the prediction horizon in every moment of any control process. 

An experimental model of Hydraulic-Pneumatic System (HPS) was chosen for the experiment. 
This model was realized within the Czech Science Foundation project 102/03/0625. The model is 
multivariable with internal connections. A complete technical description of the experimental model 
was published in [3] and schematic representation of this model is shown as figure 1. 

 
Figure 1: Schema of the experimental model 

The experimental model is comprised of four hydraulic tanks and two pneumatic volumes (air 
tanks). The hydraulic tanks on the high part, LH and RH, are connected by a shared pneumatic volume 
CH. The hydraulic tanks are interconnected to one another. The hydraulic tanks of the low part, LL 
and RL, are connected in the same way (pneumatic volume CL). 

The system has four feasible inputs in sum - openings of inflow valves V1 and V2 - ,L Ro o , 
incoming power of the pump ϕ  and desired overpressure of the liquid in an inflow pipe1 

ppw . Only 
three inputs can be manipulated in the same moment. It is possible to choose between pump incoming 
power and desired value of the liquid overpressure. 

The air chamber C influences the dynamic features of pressure regulation in the inflow pipe. 
Each hydraulic tank has an outlet hole in the tank bottom. Liquid is drained from the high tanks to the 
low tanks. A high tank output is a low tank input. The air tanks (pneumatic volumes) are provided 
with orifices. The orifices have very small diameters and they are used for pressure settlement by 
dynamic actions in the system. 

It is possible to measure seven system states and atmospheric pressure Ap . Measured states are 
levels of liquid in all hydraulic tanks (four levels - , , ,LH RH LL RLh h h h ), pressures on high and low levels 

,H Lp p  and overpressure of the liquid in the inflow pipe pp . 

Mathematical models of HPS are necessary for the experiment (specifically a linear and a 
nonlinear model). Valves, hydraulic and pneumatic tanks have to be incorporated to them, as follows 
from chapter 4. 

                                                           
1 The liquid overpressure is controlled by PSD controller in this mode. 
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3.1 Nonlinear mathematic model of HPS 
The nonlinear mathematical model used in this work is based on the first principle because such 

models correspond mostly to real processes and they respect mass and energy balances.  

Detailed description of Hydraulic - Pneumatic part of the mathematical model development was 
published in [4]. Two mathematical models were developed in this work. The more complicated 
variant respects temperature changes inside the system. The second variation doesn’t respect them. It 
was determined by custom simulations that the simplified mathematical model without respect to 
temperature changes, suffices for the laboratory model description (for the chosen operating 
conditions). The static characteristic of valves has been published in [5]. Original equations had to be 
modified from identification reasons. The complete modified nonlinear mathematical model of HPS 
and its parameters values were published in [2]. The model can be general described by equation (11), 
where the time dependent variables are described by equations (23) to (25). 

 ( ) [ ]( ) ( ) ( ) ( ) ( ) ( ) T
LH RH LL RL H Lt h t h t h t h t p t p t=x  (23) 

 ( ) [ ]( ) ( ) T
LL RLt h t h t=y  (24) 

 ( ) ( ) ( ) ( )
p

T
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3.2 Linear mathematical model 
A linear mathematical model of the plant is also necessary for the NMPC controller 

composition. The linear model was obtained by linearization of the simplified nonlinear mathematical 
model in this case what is described in [2].  

Linearization of this model was realized for a steady state according to equation (26), where 

( ),d
dt

≈ lin lin
x f x u
%  and x%  is approximation of states. The index lin determines value of the variable in 

the point of linearization. 
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This equation was used for the mathematical model linearization, but not every equation of the 
nonlinear mathematical model could be linearized in manner. The gas mass flows on both levels had 
to be approximated by another linear formula. The final linear model expressed in state space form 
(12) and its parameters values are available in [2]. 

4 Experiment 
This paper is focused on influence of iterations number on regulation quality. The influence is 

assessed by a simulation experiment where the NMPC controller is applied on HPS (see chapter 3). 
The control objective is to follow known future desired values trajectories of low liquid levels 

LLhw , 

RLhw . The controller has to take into account constraints on states and inputs. Manipulated inputs of the 
controlled system in this experiment are inflow valves openings Lo , Ro  and desired value of the liquid 
overpressure in the inflow pipe 

ppw . Such inputs choice provides much simpler mathematical model 
then the other one, more in [2]. 

4.1  Experiment conditions 
Constraints of the controlled system are given by the construction and physics laws. Openings 

of valves are lower and upper bounded. The overpressure in the inflow pipe can’t be negative and also 
is upper bounded by a maximal pumping power. Naturally, the liquid levels can’t be smaller than zero 
but they are also limited on the maximum. Only constraints of the gas pressures on the high and low 
levels are not considered. 



The reference trajectories were designed to simulate all basic types of situation that can arise 
during a control process. It was also necessary to avoid some unfavorable control condition 
(unfavorable control condition allows better approving of the iterations number influence on 
regulation quality). That’s why the reference trajectories are built from step changes by which the 
desired values change between upper and lower boundaries of the controlled outputs. The time 
between step changes was set on 600 seconds what suffices for the outputs steady states reaching. The 
basic types of situations are: 

• Growth of both low liquid levels is required. 
• Descending of both low liquid levels is required. 
• Growth of one low liquid level and descending of second are required. 
• Change of one low liquid level is required (second doesn’t change). 

The length of each simulation experiment is 4200 seconds. The sample time of the controller is 
5 seconds and the length of horizon is 100 seconds. The choosing of sample time and horizon length is 
a compromise between regulation requirements and hardware limitations and it is explained in [2]. 

Settings of weighting matrices have been found with the aid of simulation for following 
requirements: 

• Following of reference trajectories as close as possible without big overshoots. 
• Minimize the pump output (i.e. minimize desired value of the liquid overpressure in the inflow 

pipe). 

Their setting during the experiment is equal with the matrices setting in [2]. The number of 
iterations interval is one to fifteen for the experiment. The controller and also the whole experiment 
was realized in MATLAB. The optimization is realized by QP active set method. Functions and scripts 
are published in [2] and are also attached on the CD. The simulations start from steady states (for left 
side: LLh  upper boundary, for right site: RLh  lower boundary). 

4.2 Experiment outputs 
Fifteen simulation experiments have been realized in all (for different numbers of iterations). 

An example of regulation is shown on figures 2 and 3. The figure 2 shows behavior of the controlled 
system states during the experiment (red marked). The green marks desired values of system outputs 
and blue dash line symbolized states constraints. The figure 3 captures manipulated system inputs 
behaviors of the same experiment. The red color corresponds to system inputs, blue dash line is again 
used for the constraints symbolizing. 

 
Figure 2: States behavior, number of iterations 2  
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Figure 3: Inputs behavior, number of iterations 2 

The regulation quality assessment is realized via two criterions. The first keeps under review 
control errors. This criterion is described by equation (27). The criterion can be described as sum of 
absolute values of all system outputs control errors during an experiment. 

 ( ) ( )
1 1

tsim
Ty sn

r j j
j i

w i y iη
= =

= −∑∑  (27) 

where:   

rη  Control errors criterion 

yn  Number of controlled system outputs 

simt  Experiment duration 

sT  The controller sample time 

iw  A system output desired value 

iy  A system output 

The dependence of this criterion on iterations number is shown on figure 4. 

 
Figure 4: Dependence of control errors criterion on iterations number 

The second criterion qualifies the regulation quality in term of constraints respecting. The 
criterion is described by equation (28). The criterion can be described as a sum of absolute values of 
states constraints overshoots. 
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where: 

cη  States constraints overshoots criterion 

xcn  Number of states with some boundary 

cx  A state with some boundary 

limcx  A state boundary (upper or lower) 

maxcx  An upper state boundary 

mincx  A lower state boundary 

The dependence of the second criterion on iterations number is shown on figure 5. 

 
Figure 5: Dependence of states constraints overshoots criterion on iterations number 

5 Conclusion 
The simulation experiments have shown that the increasing number of iterations has really 

positive influence on regulation quality in this case. It is also necessary to say that it isn’t necessary to 
execute a great number of iteration in every sample time. For the chosen system are optimal three 
iterations what is positive from the time consuming point of view. 
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