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Abstract 

This article provides brief information about the fundamental features of a newly-

developed diagnostic system for early detection and identification of anomalies being 

generated in water chemistry regime of the primary and secondary circuit of the 

VVER-440 reactor. This system, which is called SACHER (System of Analysis of 

CHEmical Regime), was installed within the major modernization project at the 

NPP-V2 Bohunice in the Slovak Republic. The SACHER system has been fully 

developed in MATLAB environment. It is based on computational intelligence 

techniques and inserts various elements of intelligent data processing modules for 

clustering, diagnosing, future prediction, signal validation, etc, into the overall 

chemical information system. The application of SACHER would essentially assist 

chemists to identify the current situation regarding anomalies being generated in the 

primary and secondary circuit water chemistry. This system is to be used for 

diagnostics and data handling, however it is not intended to fully replace the presence 

of experienced chemists to decide upon corrective actions. 

1 Introduction 

In nuclear power plants, water is used in primary circuits, secondary circuits as well as auxiliary 

systems. Water becomes an aggressive medium especially at high temperature when in contact with 

structural materials. Hence the reliability of many nuclear power plant systems is dependent on water 

chemistry during normal operations, startups, shutdowns and abnormal operation cases. In water-

cooled power reactor, some undesirable effects may occur even under normal operating conditions, 

such as corrosion, erosion or deposition of corrosion products and other insoluble substances on heat 

transfer surfaces. Chemistry control in nuclear reactors is important at least from four different 

perspectives, namely integrity of barriers, plant radiation levels, deposit buildup and safety [1].  

Chemistry and radiochemistry data measured with conventional or advanced methods and 

sensors, as well as plant data (such as temperatures, mass flow rates, and other thermal-hydraulic and 

operational data) are normally collected with data acquisition and diagnostic system. For this 

measurement, on-line monitoring is preferred. Nevertheless, the off-line sampled data serve as 

supplemental data, which may positively or negatively influence the credibility of diagnostics in 

substantial manner. 

2 Chemical information system 

The Bohunice Nuclear Power Plant V2 (NPP-V2), which is the newer type of Soviet designed 

VVER-440 pressurized water reactor, has a water chemistry monitoring system called SYMOCHER 

(SYstem for MOnitoring of CHEmical Regimes) together with CHEMIS (CHEMical Information 

System) as a part of LIMS (Laboratory Information Management System).  It is a distributed complex 

information system for performing, monitoring and control of chemical aspects of NPP operation 

processes. The system is a very powerful tool for the management of plant chemistry and associated 

activities. Nevertheless, the knowledge of experienced plant chemists is still necessary for effective 

utilization of the system. In order to maintain plants’ ability to effectively respond to the existing or 

possible new anomalies and for the future challenges along with plant operation optimization and the 

related staff reduction, introduction of support function by higher level information and technology is 

necessary. Thus, a computational intelligence-based application package is a promising way to achieve 

this future direction. 



3 Intelligent extension 

Extensive measures have been implemented within the modernization project, such as the 

improvement of power plant’s nuclear safety, seismic resistance, and fire safety, as well as the 

increase of operation reliability and availability of the Bohunice V2 units.  The replacement and 

extension of plant information systems had also been completed. 

The availability of prompt information about the chemical conditions of the primary and 

secondary circuit is very important to prevent the undue corrosion and fouling build-up. For this 

reason, VUJE Inc. has been developing a new diagnostic system for early detection and identification 

of anomalies being generated in water chemistry regime. This system  called SACHER (System of 

Analysis of CHEmical Regime) was installed within the major modernization project at both units of 

NPP-V2 Bohunice as supplemental extension to the existing chemical information system CHEMIS. 

The typical chemical information systems that exist in operation at the NPPs provide users with 

values of the measured parameters together with their time trends and other derived values. Further to 

that, the roles of experienced users are required in order to identify the situation of the monitored 

process, to make the subsequent decisions, and to take upon the appropriate measures. The SACHER 

system, based on the computational intelligence techniques, inserts various elements of intelligent data 

processing modules for clustering, diagnosing, future prediction, signal validation, etc, into the overall 

chemical information system. The relation of CHEMIS and SACHER is shown in Fig. 1. 

 

Figure 1: Structural diagram of water chemistry monitoring and diagnostic system at NPP-V2 

Although both systems receive the data from the plant computer through the chemistry 

monitoring system SYMOCHER, the SACHER system functions independently from CHEMIS. Such 

a configuration allows easier implementation of SACHER in the other Slovakian NPP Mochovce in 

the future. SACHER has been fully developed in the MATLAB environment and has the modular 

structure described in the following sections (see also Fig.2). 

4 Initialization module 

The initialization module serves to launch the continuous surveillance of the chemical regime of   

both the 3rd and 4th units concurrently. Prior to that, the user of the system manually initializes the 

values of a few chemical parameters and the connection status of some plant systems which are not 

available on-line. The module also enables the adjustment of these parameters on the run whenever 

such requirement arises. 

There are approximately 130 process and chemistry parameters that are inputted into SACHER 

with the sampling frequency of 1 minute. They are placed in a FIFO buffer with 512 values for each 

parameter. The normality, fuzzy identification, and validation modules process only the current data 

values, while the time prediction and trend modules make use of the delayed data snapshots from the 

buffer. The size of a buffer, which is currently set as 8.5 hours, is going to be increased substantially in 

the next upgrade of the system. The low sampling rate of 1 min is taken due to the slow changes of 

chemical processes. Another reason for the selection of the low sampling frequency was the expected 



high computing requirements which the standard personal computer may not be able to meet within 

shorter sampling interval. This limitation naturally becomes insignificant when the hardware and 

software upgrade is further made in future. 

 

Figure 2: Functional block diagram of SACHER water chemistry diagnostic system 

5 Normality module 

The objective of normality module is to recognize whether or not the situation of the process 

starts to deviate from the normal one. This module is based on the possibilistic fuzzy clustering 

algorithm [2],[3] implemented into the neuro-fuzzy process signal validation system PEANO[4] 

developed by the OECD Halden Reactor Project. It is a joint undertaking of national organizations in 

20 countries including the Slovak Republic. 

The clustering algorithm must be able to generate the representative clusters to which the 

patterns of process parameter values belong. As the pattern vectors may have the characteristics of 

several classes, the classification must assign any single pattern to the representative clusters through 

the degree of membership. Otherwise, the pattern must be discarded if it is not represented by any 

cluster. Another requirement on the clustering algorithm is the smooth transition between the clusters 

as the situation represented by process signals evolves due to power maneuvers or transients. 

Fuzzy clustering reflects the probabilistic requirement that the total probability for an input data 

set pattern that belongs to any cluster is 1. It implies the patterns that are not reflecting any of the 

identified cluster prototypes are classified and assigned to the clusters, merely because of the implicit 

certainty that all of the patterns belong to the established partition. There can be uncertainty (or 

fuzziness) on where the incoming pattern could be assigned; otherwise no uncertainty exists if the 

incoming pattern can be assigned somewhere. A number of issues may arise, such as: 



- lack of robustness against noisy data.  

- The inability to provide the statement: "I do not know", although it might be the best answer 

for a given situation. An incoming pattern might be given a high grade of membership in a cluster, 

even if it is far away from all the centroids, only because it is relatively closer to one specific cluster. 

Relaxation of the requirement imposed on the established cluster partition leads to a possibilistic 

approach. For this reason, the possibilistic fuzzy clustering approach has been used in this module. A 

possibilistic classifier initially learns a dataset X of pattern samples only from normal situations. In 

other words it calculates the cluster prototypes and the corresponding membership grades of pattern 

samples. 

During training the model increases its robustness to noisy data and many patterns in X could be 

discarded as not representative of any developing cluster. As new patterns are examined during the 

monitoring phase, the possibilistic model evaluates in which cluster or clusters the incoming pattern 

could possibly be assigned, if any. It means that patterns that do not reflect any of the identified cluster 

prototypes, i.e. do not belong to the clusters of normal situations, are discarded as unknown if they do 

not fit into any cluster. The low degree of membership to all normal situations clusters, which 

represents a normality index, is the indication of an incoming anomaly and serves as early warning to 

staff in order to take upon the appropriate measures. 

There are 26 signals of chemical quantities selected by an experienced chemist. All acquired 

snapshots of these signals were then filtered and only those satisfying the specific criteria set up in 

advance were chosen to build up the possibilistic fuzzy clusters of normal situations and for normality 

index calculations. An example of a normality index window is depicted in Fig.3. 

 

Figure 3: Example of normality index window 

The normality index values for both units over the last 512 minutes (8.5 hours) are shown in the 

sliding windows. In the case presented, both indices are mostly at the bottom of the normal band, 

which is a strip of light green background color. The normality index line is color-coded with green, 

amber, brown, or red for all signals available, one, two, or three and more signals respectively missing. 

It reflects the situation that for fewer inputs available the normality index is evaluated less accurately 

which can be understood by the change of line color. The bigger normality index value means the 

situation is closer to normal. The results of the normality module, which is based on data- driven 

models, are in consensus with the identification of a normal situation by the fuzzy identification 

module. It is conversely based on the rules set up by an experienced chemist. 

6 Fuzzy identification module 

The objective of fuzzy identification module is to identify the anomaly in the chemical regime. 

Despite the previous normality module in which only the deviation from the normal regime is 



expressed by the normality index as the degree of membership to clusters of normal situations, in the 

fuzzy identification module, the situation, whether normal or anomalous, is recognized on the basis of 

a set of fuzzy rules. The fuzzy if-then rule is made up of a number of antecedent and consequent 

linguistic statements, suitably related by fuzzy connections.  They were proposed by an experienced 

chemist and apply his knowledge on the chemical process, which is acquired over a long period of 

time. The fuzzy rule base consists of a set of R rules (currently 80), each assigned to an anomaly to be 

identified, e.g.: 

Rj: if (p1 is P1j) or (t1 is T1j) and…and (pn is Pnj) or (tn is Tnj) then ( a is Aj ) 

The measured antecedent variables p are represented by the fuzzy sets P, e.g. HIGH, 

NORMAL, or LOW, into which range of each variable is partitioned. The estimated trend variables ti 

are represented by fuzzy sets T, e.g. INCREASING, STABLE, or DECREASING. Although the fuzzy 

rules were originally proposed with the trend variables for diagnosing the anomalous situations, yet 

the current version does not include them. The reasons are justified in the later section of this article. 

The membership functions to the fuzzy sets are of typical trapezoidal shape, which again were 

proposed by an expert. Similarly to the zero-order Takagi-Sugeno-Kang fuzzy model, the consequents 

a are represented by singleton spikes A, which refer to the anomaly to be identified. The firing strength 

of each rule reflects by what degree the rule is activated by the incoming inputs, i.e. the respective 

anomaly degree in which the current operational situation is at that moment, as shown in Fig.4. 

Figure 4: Example of fuzzy identification window 

According to Fig.4, usually more diagnoses, i.e. more fuzzy rules, can fire concurrently. The 

reason is that the antecedent conditions of more rules, matching the anomalous situations near to each 

other, are fulfilled to a certain degree. Normally in the diagnostic systems, the rules in the fuzzy rule 

base are connected by else connective operator interpreted by maximum, which would end up with the 

final output. In the current system, this step has been omitted even if the user can see more rules firing 

at the same time. This approach was adopted on purpose as in reality, the current first version of the 

fuzzy rule base does not include the trend variables. Thus the rules are not the optimal representatives 

of the anomalies. It has been found that the recognition of the trends in the inputs was not sufficiently 

reliable to avoid degraded evaluation of the rule. It is therefore better from the perspective of human-

factor issues to leave the final judgment on experienced user. Despite these limitations, the users may 

experience an overall satisfaction from the application of the fuzzy identification module. Nevertheless 

it will be the further tuning task for the next upgrade of the system to minimize this effect by refining 

the rules and membership functions. 

In Fig. 4 the columns are color-coded. Blue represents the situation when all chemical quantities 

required for evaluation of the fuzzy rule are available. Green is reserved for normal situation. This 

allows users to easily identify the degree of its fulfillment.  If one or more quantities entering the 

antecedent part of the rule are missing (this corresponds to the incomplete input information), the color 



of the column changes to red. The more inputs missing, the more the firing strength of the rule might 

be negatively affected. This would be expressed through the change of line color.  

The users may also obtain the time trends of all diagnostics in the form of a 3D waterfall 

diagram and also their description by clicking a proper button. 

7 Time-prediction module 

The objective of time-prediction module is to predict the behavior/trend of the selected 

measured chemical quantities 8 hours ahead in 15 minutes step from the moment of request. The 

model uses properly-trained artificial neural networks, each giving the prediction to the specific time 

step. Each network has 3 layers, input layer of 48 equidistant time-delayed inputs, 1 hidden layer and 

one output layer with one node for prediction.  It means that for one quantity to be predicted 8 hours 

ahead, there are 32 neural networks to be engaged. In reality the neural networks would even be more, 

as the entire operating range of each quantity has been partitioned into 3 or 4 fuzzy clusters by fuzzy c-

mean algorithm. This partitioning aims to avoid training of the neural networks to capture all 

situations at once. Each cluster is assigned to its own set of neural networks. It has been proven that 

the neural networks perform better if they are trained to recognize only specific types of situations. 

Figure 5 illustrates the time prediction of a selected chemical quantity. 

Figure 5: Example of time prediction window 

During the prediction task, the cluster that reflects the most of the given situation is found in the 

beginning. Afterwards the prediction is conducted by neural networks that are trained to situations of 

that respective cluster. 

The training and testing data were obtained from the real process. The mean absolute percentage 

prediction error (MAPE) in most cases is approximately 1% for short-time prediction and has a 

growing trend to 10% for long-time prediction 8 hours in advance, which satisfies the original project 

criteria. Yet there are situations when the signals change their stationary behavior and the prediction 

accuracy decreases. As mentioned above, the neural networks’ inputs are 48 delayed values 

representing 8 hours of past time. For successful prediction of the time series, one needs a much 

longer sliding time delay window in the input than the prediction time horizon applied for the neural 

networks output. The current 8 hour window was originally selected as the minimal trade-off to 

comply with the computer speed and memory capabilities. It limited the choice by the authors of this 

paper to the present length of the data buffer as 512. The 2
k
 length was chosen for discrete wavelet 

based denoising of inputs to the neural networks.  

In this first version, only a limited effort on the selection of delays was performed and they were 

left equidistant. The other limitation of the current system is that only the past values of the same time 

series are used for the univariate time series prediction. Expectedly, better prediction performance may 



be attained if variations in the other related variables are also taken into account. However by the 

authors’ trial case, it resulted in more complicated neural networks without significant improvement to 

the forecasting outcome. The author of this paper conjectures that this might be ascribed to the short 

input time-delay window adopted in this version. In the further steps, the time-prediction module will 

be rearranged after switching to 64bit architecture of the new computer with the aim of improving the 

prediction accuracy.   

8 Validation module 

The objective of validation module is to validate the measured quantities. The originally 

intended neuro-fuzzy approach to validation of readings of chemical quantities did not produce 

satisfactory results. This is perhaps due to the relations between the chemical quantities, which are 

many times vague and with substantial delays. As a consequence, the auto-associative kernel 

regression method based on fuzzy c-mean classification and adaptive distance measure [5],[6] was 

chosen for validation. The true expected value of the measured quantity is calculated as the weighted 

average of the values obtained from the nearest clusters in a certain vicinity to the most representative 

one. The centers of these clusters have been found in the training phase in advance. The mismatch 

between the measured values and their true expected calculated counterparts can be estimated whether 

or not exceeding the properly chosen error band. Figure 6 shows the validation of a selected chemical 

quantity. 

Figure 6: Example of validation window 

9 Trend module 

This module serves for showing the trends of the acquired quantities as seen in Fig.7. 

 

10 Conclusions 

This article provides a short description of the chemical information system SYMOCHER/ 

CHEMIS and its intelligent extension SACHER implemented at the Slovakian Bohunice NPP. 

SACHER aims to support chemists in the early detection and identification of anomalies in the 

primary and secondary circuit water chemistry. This would help chemists in identifying the latest and 

developing situations at the NPP. 

SACHER, which makes use of computational intelligence techniques, has been newly-

developed and is being further tuned on the basis of acquired experience. There are further plans for 

improvements, mainly to taking into account the new operational situations in the water chemistry 

regime. The shortcoming of the current version is that the fuzzy rules do not consider the trends of 



ascending, stable, or descending. The reason is that unreliable recognition would cause inaccurate 

evaluation of the strength of anomalies. The next step to make the fuzzy identification module more 

accurate is to develop a reliable algorithm of chemical quantity trend recognition. 

Figure 7: Example of trend window 

This expert-like intelligent extension to the existing chemical information system, particularly 

for its ability of early notification of abnormal situations in the chemical regime will assist young 

chemists as well as experienced chemists with overloaded responsibilities. In the future it is also 

expected that it will assist control room staff in the absence of chemists in the shift crew. Although 

this system is effective, it is not intended to fully replace the presence of experienced chemists to 

decide upon corrective actions. It is expected that SACHER will be used for diagnostics and as an 

additional tool for data handling. 
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