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Abstract 
 

 Nowadays, the emphasis is given on the efficiency of the control of electrical drives. Parts of 
the control are observers, which are responsible for estimated values for the control algorithm. The 
observers are proposed for electrical drive with a flexible coupling using Forced Dynamic Control 
(FDC) with a position sensor on the rotor shaft. The flexible connection between the load and the 
motor shaft could be a source of the undesirable torsion vibrations. FDC is used to prevent this 
possibility. Designed observer algorithms are verified by the measured data files, which contains 
values of electrical drive with FDC with two sensors, one on the motor shaft and other one on the load 
side.   

1 Parts of the electrical drive 

1.1 The control system of the electrical drive 
The observer algorithms are designed for the electrical drive with a flexible coupling with a 

position sensor on the motor shaft. FDC used in the drive is described in [1], [3] and [4]. A speed 
control algorithm used in the simulation is defined:  
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Where id,q dem are demanded stator currents, ωR is angle speed of rotor shaft, p is number of pole pairs, 
JR is rotor moment of inertia, ΨPM is magnetic flux of permanent magnets, Tω is the settling time of 
speed FDC and ΓLs is motor torque. Position control algorithm is defined: 
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Where θL is position of load shaft, θR is position of motor shaft, ωL is angle speed of load, Ks is spring 
constant, JL is load moment of inertia, ΓLe is load torque and d is defined as 2Tθ/15, where the Tθ is the 
settling time of position FDC. Mathematical model in d, q frame for permanent magnet synchronous 
motor is used in the simulation [2]. The flexible coupling math model is used without damping and it 
is described in [3], [4], [5]. Model of PMSM with flexible coupling is defined: 
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ud, uq are stator voltages, id, iq are stator currents, Rs is resistance of the stator windings, Ld, Lq  are 
inductance in d, q axis, Ψd, Ψq are magnetic flux in d, g axis and ΓLe is external load torque. 

The complete block diagram of the electrical drive system is shown in Figure 1. Input for the 
position FDC block and the entire drive system is the demanded position of load shaft θL dem. Output 
from position FDC block is generating demanded angle speed of motor shaft ωR dem and it is the input 
for the speed FDC block. Demanded stator currents are developed in the speed FDC block. A 
comparison between them and stator currents from PMSM is the input for the inverter, which is 
supplying the motor. The inverter block is defined as a gain multiplication. Motor shaft is connected 
with the load by flexible coupling, for example a long shaft. The position sensor is used on the motor 
shaft. The position of motor shaft θR and stator current iq are used observers. The observers are 
estimating variables for FDC control algorithms. 

 

Figure 1: The complete block diagram of the electrical drive system 

1.2 Motor Load torque observer 
Measured position of rotor shaft θR and stator current iq are used for the Motor Load Torque 

Observer. The load torque ΓLs and rotor angle speed ωR are the goals of the estimation that are needed 
for FDC speed control block. The differential equations, which describe the observer, are based on the 
mechanical differential equations of permanent magnet synchronous motor (PMSM). The equation for 
the load torque is impossible to define exactly, therefore the load torque is considered to be a constant 
with regard to the settling time [3].  
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The observer is based on the comparison between the measured θR and the estimated position of motor 

shaft *
Rθ , where the difference is defined as the measured error *

θR R Rε θ θ  . The Motor Load Torque 

Observer equations are created by adding this correction with the relevant gains kθ, kω and kΓ. 

   *R
R θ R R

dθ
ω k θ θ

dt
           (13) 

    * *R
d q q d Ls ω R R

R

dω 1
c Ψ i Ψ i k θ θ

dt J
             (14) 

        *Ls
R R

d
k θ θ

dt 


           (15) 

Dynamic error system is formed by subtraction of the observer equations from the observed system 
equations. The system is rewritten in a matrix form. The constant a is defined as 1/JR. 
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Dynamic error system is changed by another adjustment and by substitution. The measured error ε is 
reinstated for the position, the angle speed and the torque differences and the matrix has a form 

 i iε A ε , where the index i means θR, ωR, Γ: 
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The observer behavior is intended so that the difference between the real and the estimated position 
variables is converging to the zero with increasing time of calculation. The eigenvalues of dynamic 
error system matrix A must have negative real parts. It is achieved by calculation of determinant. 
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The solution of this obtained equation has three multiple roots λ1,2,3=-ω0 and prescribed settling time of  
TU1 can be achieved using Dodds formula [13], where for the third order polynomial concerns n = 3.  
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The characteristics third order equation is:  
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The gains are achieved by comparison between the matrix determinant and the characteristics 
equation. Parts λ with the same superscript are compared and the gains are 
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Block diagram of Motor Load Torque Observer shows Figure 2.  



 

Figure 2: Motor Load Torque Observer block diagram 

1.3 State Observer 

State Observer is used for the behavior estimation of mechanical part of PMSM and flexible 
coupling. The observer inputs are the position of rotor shaft θR and the stator current iq.  Position of 
load θL, angle speed of load ωL, angle speed of motor shaft ωR and external load torque ΓLe are 
estimated in this observer and are needed for positional FDC algorithm. Description of equations is 
based on the flexible coupling math model and with one added equation for external load. It is 
assumed that the external load torque is equal to the constant with regard to the settling time TU2 [3]. 
Block diagram of State Observer is shown in Figure 3. State Observer equations are: 
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Calculated gains for State Observer are: 
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Figure 3: State Observer block diagram 

 

1.4 Derivation of Load Torque Observer  
Estimated external load torque ΓLe from State observer is the input for Derivation of Load 

Torque Observer. Its goal is to estimate first and second derivation of the external load torque for the 
position FDC block. The observer equations contain only relevant derivation of external load torque 
with a correction. The equation for the third derivation is supposed to be constant with regard to the 
settling time TU3 [3]. In this case, the observer equations are:  
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The relevant gain values are: 
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Block diagram of Derivation of Load Torque Observer is shown in Figure 4. 

 

Figure 4: Block diagram of load torque derivation observer 
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2 Verification by Simulation  

Matlab/simulink was used for the simulation. The simulation comparison was done between 
the system without and with the data files. The data files were obtained by measurement of a real 
electrical drive with flexible coupling and position sensors on both shaft sides and controlled using 
FDC. Demanded load position θL dem was 2π rad with the prescribed settling time Tθ = 0,2s. Speed 
FDC algorithm settling time Tω was 0,017s. The drive was loaded during the measurement with an 
external load ΓLe = 3Nm in the time 1s [4]. Settling times for Motor Torque Observer is TU1=0,04s, for 
State Observer is TU2=0,08s and for Derivation of Load Torque Observer is TU3=0,08s. Simulation 
block diagram used in the simulation with no data files is shown in Figure 1 and with the data files in 
Figure 5.  The position of the motor shaft θR and the current iq is taken from the files. 

 

Figure 5: Block diagram of simulation with data files 

3 Results 

Figure 6 shows the comparison between variables estimated in State Observer. Figure 6a is 
showing estimated positions of loads θL, one for the ideal simulation and the other one for simulation 
with the data files. In Figure 6b are the compared positions of motor shaft θR. Figure 4c and 4d are 
showing the estimated angle speeds, in 6c speed of load shaft ωL and in 6d speed of motor shaft ωR. 
Estimated external load torque ΓLe is in 6e. The again estimated external load torque ΓLe by Derivation 
of Load Torque Observer is shown in the Figure 7a and its derivation in 7b, 7c. The motor load torque 
ΓLs and the angle speed of motor shaft ωR estimated by Motor Load Torque Observer are shown in 
Figure 8a and 8b. All estimated variables are imaged with an error e between them, only derivations of 
load torque not. 
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Figure 6: Comparison of estimated variables by State Observer  
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Figure 7: Estimated variables by Derivation of Load Torque Observer 
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Figure 8: Estimated variables by Motor Load Torque Observer 

4 Conclusion  

The proposed observer algorithms were verified. Estimated positions, angle speeds and torques 
are following the demanded courses. Observer algorithms in the simulation with the data files are 
working well. The differences between simulation with data files and without are the result of sensor 
sensitivity and used math model. Derivations of load torque are very noisy and that could be a problem 
in a real application. The simulation has proved that the measured data files can be used for the 
verification of proposed algorithm parts. 
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Appendix 

Rs = 1,3 Ω, Ld = 14,4 mH, Lq = 16,3 mH, ΨPM = 0,13 Wb, p = 5, JR = 0,0037 kgm2, JL = 0,01 
kgm2,   Ks= 23 Nm rad-1  
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